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Our goal

Y(A) = M(A)/ det(A)7 < v/n

We are interested in

1. explicit construction of a lattice with as large v(A) as possible
2. with an efficient (list-) decoding algorithm (runtime at most poly(n)).



Our goal

Y(A) = M(A)/ det(A)7 < v/n
We are interested in

1. explicit construction of a lattice with as large v(A) as possible
2. with an efficient (list-) decoding algorithm (runtime at most poly(n)).

Why? We might want to use lattice as codes, hence we care about their
decoding properties.

A ‘random’ lattice (an example will given later) is expected to achieve
V/7(A) ~ y/n, but we do not know how to efficiently decode them.
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Constriction-A:

Take B € (Z/qZ)"™ —

a generator matrix of a code.
A =7Z"B +qZ™ C Z™

Is a construction-A lattice.
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n
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Main result

Theorem: For a constant € > 0, there is a family of lattices £ C R™ with

normalized minimum distance

M) Vn
Jot ()7~ ((log n)s+o<1>) |

These lattices are list decodable to within distance 1/1/2 - A;(A) in poly(n)
time.
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Construction-D lattices



Construction-D lattice: Definition
e Fix an integer L > 0, let

CrCCr.1C...CCCCy=F,

be a tower of p-ary codes of length n, where dim(C;) = k;.
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Construction-D lattice: Definition
e Fix an integer L > 0, let
CrCCr.1C...CCCCy=F,

be a tower of p-ary codes of length n, where dim(C;) = k;.
® Let by,..., b, be a basis of F}) such that
1. by,..., by, is a basis of C; for all i =0,...,L, and
2. some permutation of by,...,b, forms an upper-triangular matrix.
* Define a set of distinguished Z" representatives of c; = Zfizl a;jb; € C; as

ki
Ei:ZEijEZn WhereajE{O,...p—l}CZ.
j=1
® et Lo =7", and for each 7 =1, ..., L define
Ai = 61 —|—pAi_1, 62 = {Ei D C € CZ}
e The construction-D for the tower {C;} is A = AL.



Properties of construction-D lattices

For
CrCCL1C...CCLCCy=F;
with dim C; = k; and d(C;) > p?, we know
1. the minimum of A = Az: A\ (A) = pt,
2. an upper bound on the determinant of A: det(A) < (p — 1)z pXici (k)



Properties of construction-D lattices

For
CrCCL1C...CCLCCy=F;

with dim C; = k; and d(C;) > p?, we know

1. the minimum of A = Ap: A\ (A) = pl,
2. an upper bound on the determinant of A: det(A) < (p — 1)”‘kLpZiL=1(”‘ki)

If we know an efficient list-decoding algorithm for C;'s, then

3. there is an efficient list decoding algorithm on A with decoding radius
QA (A)).

See a proof for 1. and 2. in E.S. Barnes, N.J.A. Sloane. New lattice packings of spheres.
See an algorithm for 3. in E.Mook, C.Peikert. Lattice (list) decoding near Minkowski's
inequality.
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Garcia-Stichtenoth tower code



Definition
Let h in ¢ = p" be even, hence ¢ = p" = r? for r = p/2.
For an integer e > 2, define the following recursive relations

xr

ﬁ’ izl,...,e—l.
T

T
ZTir] T Tit1 =

Then K, = Fy(x1,...,z.) is a function field, and the sequence K, Ks, ... is
known as the Garcia-Stichtenoth tower of function fields.



Definition
Let h in ¢ = p" be even, hence ¢ = p" = r? for r = p/2.
For an integer e > 2, define the following recursive relations

xr

ﬁ’ 7::17...,6—1.
T

Tiy1 + Tig1 =
Then K, = Fy(x1,...,z.) is a function field, and the sequence K, Ks, ... is
known as the Garcia-Stichtenoth tower of function fields.

Properties:

* the genus of K, is g = O(r°),

® The number of rational points on K, is Q(T6+1).



Codes from Garcia-Stichtenoth tower
o P={P,...,P,} is a set of n distinct rational places of a ff. F'/F,.
e (G is a divisor of F' such that supp(G) NP = (). The set
C(P,G) = {f(P),.... f(P): f € L@G)}.

defines an n-dimensional IF-linear code, where L is the Riemann-Roch
space of G.
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e (G is a divisor of F' such that supp(G) NP = (). The set
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defines an n-dimensional IF-linear code, where L is the Riemann-Roch
space of G.

Properties of C(P,G): for 2g — 2 < deg(G) < n

e dimension dim C(P,G) = deg(G) — g + 1
® min. distance d > n — deg(G)



Codes from Garcia-Stichtenoth tower

o P={P,...,P,} is a set of n distinct rational places of a ff. F'/F,.
e (G is a divisor of F' such that supp(G) NP = (). The set

C(P>G):{f(Pl)’7f(Pn)f€[’(G)}

defines an n-dimensional IF-linear code, where L is the Riemann-Roch
space of G.

Properties of C(P,G): for 2g — 2 < deg(G) < n

e dimension dim C(P,G) = deg(G) — g + 1
® min. distance d > n — deg(G)

Case F'is K,: take G = (P, for ¢ > 2r¢ — 2 and n ~ r¢t! maximal, obtain

e dimension dimC(P,G) ~ { —r°+1
® min. distance d > r¢t!t — ¢.
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¢ a function field K, of genus g for some e,
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¢ a function field K, of genus g for some e,

e {/;},— a sequence of positive integers satisfying ¢; > ¢;; for
1=1,...,L—1and {; > 2g — 2.
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B C CG



Sequence of codes from Garcia-Stichtenoth tower

To construct
CrCCL.1C...CCCCy=Fy,

consider

e a function field K, of genus g for some e,
e {/;},— a sequence of positive integers satisfying ¢; > ¢;; for
1=1,...,L—1and {; > 2g — 2.
e Then C; = C(P,;P) are F -linear codes with
B C CG

Using the result of Shum et al. [SAKSD], we know how to construct a basis
for Cj in time O((nlog,n)?).



Part IV

Construction-D lattice from GS tower code



Subfield subcodes

C — T, code for ¢ = p". Its subfield subcode Cl, is defined as
Clr, = CNT,.
Properties of C|g,:

* minimal distance: d(Clg,) > d(C),
® dimension dimg, (Clg,) > n — h(n — k) (see [Sti])



Sequence of subfield subcodes from GS tower

Let C; = C(P,£iPy)r, for 0 < i < L, g =p". Then

5’L§CL_1§---§E;'V1§@V0:FZ
Is a sequence of p-ary codes s.t.

o dim(Cy) >n—h(n—l;+g—1)

Choosing e, h, L, ¢;, ‘appropriately’, gives us a construction-D lattice with the
normalized minimum distance as in the main result.



Choices of the parameters to achieve the claimed min. distance
Theorem: For a constant € > 0, there is a family of lattices £ C R"™ with normalized

minimum distance
A1(A) _q vn
det(A)L/n (logn)ete@) J°
These lattices are list decodable to within distance y/1/2 - A1 (A) in poly(n) time.
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1. Fix a prime p and a parameter x(¢)
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Choices of the parameters to achieve the claimed min. distance
Theorem: For a constant € > 0, there is a family of lattices £ C R"™ with normalized

minimum distance
MA) ( vn )
det(A)/n (logn)ste) -

These lattices are list decodable to within distance 1/1/2 - A1 (A) in poly(n) time.
Proof sketch:

1. Fix a prime p and a parameter x(¢)

2. Let r ~log, x be a power of p and e ~ log, k. Set ¢ = r? = p".

3. Choose n ~ r¢*! rational points on K,

4. Set 6;=n—p* and L = | log,(n/h —g)]



Choices of the parameters to achieve the claimed min. distance
Theorem: For a constant € > 0, there is a family of lattices £ C R"™ with normalized
minimum distance
A1(A) _q vn
det(A)L/n (logn)ete@) J°
These lattices are list decodable to within distance y/1/2 - A1 (A) in poly(n) time.
Proof sketch:
1. Fix a prime p and a parameter k(¢)
2. Let r ~log, x be a power of p and e ~ log, k. Set ¢ = r? = p".
3. Choose n ~ r¢*! rational points on K,
4. Set 6;=n—p* and L = | log,(n/h —g)]
The choice of L ensures that dim(Cy) > 0 and that

n
M(A) =p" > \/ loglogn’

The choice of ¢; leads to det(A)Y™ < (log,(n))c.



What about decoding?

e \We know how to efficiently decode C;'s thanks to Guruswami-Sudan [GS]
list decoding algorithm

® There is a soft decision decoding technique due to
Koetter-Vardy [KV] that allows to decode BCH codes using a
Reed-Solomon decoder.

Idea: adapt Guruswami-Sudan decoding to soft decision decoding.



What about decoding?

e \We know how to efficiently decode C;'s thanks to Guruswami-Sudan [GS]
list decoding algorithm

® There is a soft decision decoding technique due to
Koetter-Vardy [KV] that allows to decode BCH codes using a
Reed-Solomon decoder.

Idea: adapt Guruswami-Sudan decoding to soft decision decoding.

In hard decision a decoder receives on input y € R™ and outputs a list of
vectors close (in ¢; norm) to y.

In soft decision a decoder receives on a reliability matrix I € RIFalx" where
I1; ; describes the probability that the transmitted codeword has symbol
a; € Fy in the j-th position. It outputs a list of vectors that are ‘related’ to II.



Soft decision decoder for GS subfield subcodes
Where do we get Il from?

® it is either given by the communication channel (original motivation for
soft decision decoding)

® or it can be constructed from the received word y as shown by
Mook-Peikert [MP].



Soft decision decoder for GS subfield subcodes
Where do we get Il from?

® it is either given by the communication channel (original motivation for
soft decision decoding)

® or it can be constructed from the received word y as shown by
Mook-Peikert [MP].

An adaptation of Koetter-Vardy decoder for BCH to GS codes gives

Theorem For e > 0, R — code rate, and d — min. distance of GS codes
defined over F,, there exists an algorithm for decoding C' C [y, receiving on
input y € R”, cills Koetter-Vardy soft-decision decoder and outputs

codewords ¢ € C' that satisfy
d
Iy —cll < (1-&)3,

in time polynomial in n,logq, and 1/e.



From decoding subfield subcodes to decoding Ay,

Theorem (Mook-Peikert [MP]) Let L > 0 be an integer and let Ay be a
construction-D lattice built from a tower

6’LQ6L—1§-"Q51Q502F2'

Let D, be a list decoder for @ that decodes up to Euclidean distance
e; = pleg for some 0 < eg < p/2 for all 0 < i < L.



From decoding subfield subcodes to decoding Ay,

Theorem (Mook-Peikert [MP]) Let L > 0 be an integer and let Ay be a
construction-D lattice built from a tower

CLCCp1C...CC QCV'O:FZ'
Let D, be a list decoder for @ that decodes up to Euclidean distance
e; = pleg for some 0 < eg < p/2 for all 0 < i < L.

Then there is an algorithm that given on input y € R™ and access to D,
outputs a list of vectors v € Ay s.t.

ly —v| < Al(AL)/\/Q

If D; run in poly(n,logp) time, then this algorithm also runs in poly(n,logp)
time.



From decoding subfield subcodes to decoding Ay,
Theorem (Mook-Peikert [MP]) Let L > 0 be an integer and let A; be a
construction-D lattice built from a tower
CLCCp1C...CC QCV'O:FZ'
Let D, be a list decoder for @ that decodes up to Euclidean distance
e; = pleg for some 0 < eg < p/2 for all 0 < i < L.

Then there is an algorithm that given on input y € R™ and access to D,
outputs a list of vectors v € Ay s.t.

ly —v| < Al(AL)/\/Q

If D; run in poly(n,logp) time, then this algorithm also runs in poly(n,logp)
time.

Conclusion: we have an efficient algorithm to decode A;,.
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Input to decoder: reliability matrix IT, P = { Py, ..., P,}
Precomputation: convert IT € RFa*" into a multiplicity matrix M & ZFalxn

Assume F, = [, ..., o).



More details on soft decision decoding
Input to decoder: reliability matrix IT, P = {P,..., P}
Precomputation: convert IT € RFa*" into a multiplicity matrix M & ZFalxn
Assume F, = [, ..., o).
All known algebraic decoders work in two steps:

|. (Soft) Interpolation step. Goal: find a polynomial Q(y) € K|[y] s.t.:

1. Q(ay;)[P;] is zero of multiplicity M, ; for all M;; > 0.
2. Q(f) € L(IPy) for any f € L({P).

Idea: Assign M;; = 0 for ¢'s that index elements form I, \ F,.



More details on soft decision decoding

Input to decoder: reliability matrix IT, P = {P,..., P}

Precomputation: convert IT € RFa*" into a multiplicity matrix M & ZFalxn
Assume F, = [, ..., o).

All known algebraic decoders work in two steps:

|. (Soft) Interpolation step. Goal: find a polynomial Q(y) € K[y s.t.:

1. Q(ay;)[P;] is zero of multiplicity M, ; for all M;; > 0.
2. Q(f) € L(IPy) for any f € L({P).

Idea: Assign M;; = 0 for ¢'s that index elements form I, \ F,.

Il. Factorisation step: factor (y) over K to obtain factors of the form
(y — fi)", where f;'s form a list of potential encoded messages.



Open problems and directions

e Other choices of codes may be better (tried Goppa codes but received the
same quality as construction-D from BCH codes)?

® Other ways to map a code over IF,» to a code over [, (tried trace codes
but could not get a good bound on the minimum distance)?


https://crypto-kantiana.com/elena.kirshanova/Papers/DLattice.pdf

Open problems and directions

e Other choices of codes may be better (tried Goppa codes but received the
same quality as construction-D from BCH codes)?

® Other ways to map a code over IF,» to a code over [, (tried trace codes
but could not get a good bound on the minimum distance)?

Thank you! Q7

The preprint can be found at
https://crypto-kantiana.com/elena.kirshanova/Papers/DLattice.pdf


https://crypto-kantiana.com/elena.kirshanova/Papers/DLattice.pdf
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