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Part I

Lattice constructions from codes



Lattice invariants

0

b1

b2

c

Minimum

λ1(Λ) = minv∈Λ\0 ‖v‖2

Determinant

det(Λ) = |det(bi)i|
Minkowski bound

λ1(Λ) ≤
√
n · det(Λ)

1
n

Normalized min. distance√
γ(Λ) = λ1(Λ)/ det(Λ)

1
n

A lattice is a set Λ = {
∑

i≤n xibi : xi ∈ Z} for linearly independent bi ∈ Rn.
{bi}i is a basis of Λ
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Our goal

√
γ(Λ) = λ1(Λ)/ det(Λ)

1
n ≤
√
n

We are interested in

1. explicit construction of a lattice with as large γ(Λ) as possible
2. with an efficient (list-) decoding algorithm (runtime at most poly(n)).

Why? We might want to use lattice as codes, hence we care about their
decoding properties.

A ‘random’ lattice (an example will given later) is expected to achieve√
γ(Λ) ∼

√
n, but we do not know how to efficiently decode them.
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State-of-the art on
√
γ(Λ) (Ω() for

√
γ(Λ) is omitted)

Defined by the rows of

BWk =

[
1 1

0 φ

]⊗k
⊂ C2k,

where φ = 1 + i

For (Z/mZ)?,

pi – primes, 1 ≤ i ≤ n

φ : Zn → (Z/mZ)?

(x1, . . . , xn) 7→
∏n

i=1 p
xi
i

Λdlog = kerφ.

To be defined later

Constriction-A:
Take B ∈ (Z/qZ)n×m –

a generator matrix of a code.

ΛA = ZnB + qZm ⊂ Zm

is a construction-A lattice.

This work

Lattice Λ
√
γ(Λ)

Barnes-Wall lattice [BW] n1/4

Barnes-Wall lattice [BW] n1/4

Discrete Logarithm Lattices [DP]

√
n

log n

Construction-D lattice
√

n
log nfrom BCH codes [MP]

Construction-A lattice
√

n
log nfrom Reed-Solomon codes [BP]
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Main result

Theorem: For a constant ε > 0, there is a family of lattices L ⊂ Rn with

normalized minimum distance

λ1(Λ)

det(Λ)1/n
= Ω

( √
n

(log n)ε+o(1)

)
.

These lattices are list decodable to within distance
√

1/2 · λ1(Λ) in poly(n)
time.



Part II

Construction-D lattices



Construction-D lattice: Definition
• Fix an integer L ≥ 0, let

CL ⊆ CL−1 ⊆ . . . ⊆ C1 ⊆ C0 = Fn
p

be a tower of p-ary codes of length n, where dim(Ci) = ki.

• Let b1, . . . ,bn be a basis of Fn
p such that

1. b1, . . . ,bki is a basis of Ci for all i = 0, . . . , L, and
2. some permutation of b1, . . . ,bn forms an upper-triangular matrix.

• Define a set of distinguished Zn representatives of ci =
∑ki

j=1 ajbj ∈ Ci as

ci =

ki∑
j=1

ajbj ∈ Zn where aj ∈ {0, . . . p− 1} ⊂ Z.

• Let L0 = Zn, and for each i = 1, . . . , L define

Λi = Ci + pΛi−1, Ci = {ci : ci ∈ Ci}.
• The construction-D for the tower {Ci} is Λ = ΛL.
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Properties of construction-D lattices

For
CL ⊆ CL−1 ⊆ . . . ⊆ C1 ⊆ C0 = Fn

p

with dimCi = ki and d(Ci) ≥ p2i, we know

1. the minimum of Λ = ΛL: λ1(Λ) = pL,

2. an upper bound on the determinant of Λ: det(Λ) ≤ (p− 1)n−kLp
∑L

i=1(n−ki)

If we know an efficient list-decoding algorithm for Ci’s, then

3. there is an efficient list decoding algorithm on Λ with decoding radius
Ω(λ1(Λ)).

See a proof for 1. and 2. in E.S. Barnes, N.J.A. Sloane. New lattice packings of spheres.
See an algorithm for 3. in E.Mook, C.Peikert. Lattice (list) decoding near Minkowski’s
inequality.
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Part III

Garcia-Stichtenoth tower code



Definition

Let h in q = ph be even, hence q = ph = r2 for r = ph/2.

For an integer e ≥ 2, define the following recursive relations

xri+1 + xi+1 =
xri

xr−1
i + 1

, i = 1, . . . , e− 1.

Then Ke = Fq(x1, . . . , xe) is a function field, and the sequence K1, K2, . . . is
known as the Garcia-Stichtenoth tower of function fields.

Properties:

• the genus of Ke is g = Θ(re),

• The number of rational points on Ke is Ω(re+1).
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Codes from Garcia-Stichtenoth tower

• P = {P1, . . . , Pn} is a set of n distinct rational places of a ff. F/Fq.
• G is a divisor of F such that supp(G) ∩ P = ∅. The set

C(P , G) = {f(P1), . . . , f(Pn) : f ∈ L(G)}.

defines an n-dimensional Fq-linear code, where L is the Riemann-Roch
space of G.

Properties of C(P , G): for 2g− 2 < deg(G) < n

• dimension dimC(P , G) = deg(G)− g + 1

• min. distance d ≥ n− deg(G)

Case F is Ke: take G = `P∞ for ` > 2re − 2 and n ≈ re+1 maximal, obtain

• dimension dimC(P , G) ≈ `− re + 1

• min. distance d ≥ re+1 − `.
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Sequence of codes from Garcia-Stichtenoth tower

To construct
CL ⊆ CL−1 ⊆ . . . ⊆ C1 ⊆ C0 = Fn

q ,

consider

• a function field Ke of genus g for some e,

• {`i}i– a sequence of positive integers satisfying `i ≥ `i+1 for
i = 1, . . . , L− 1 and `L > 2g− 2.
• Then Ci = C(P , `iP∞) are Fq-linear codes with

� Ci+1 ⊆ Ci.
� dim(Ci) = `i − g + 1,
� d(Ci) ≥ n− `i for 0 < i ≤ L.

Using the result of Shum et al. [SAKSD], we know how to construct a basis
for Ci in time O((n logq n)3).
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Part IV

Construction-D lattice from GS tower code



Subfield subcodes

C – Fq code for q = ph. Its subfield subcode C|Fp is defined as

C|Fp = C ∩ Fn
p .

Properties of C|Fp:

• minimal distance: d(C|Fp) ≥ d(C),
• dimension dimFp(C|Fp) ≥ n− h(n− k) (see [Sti])



Sequence of subfield subcodes from GS tower

Let C̃i = C(P , `iP∞)|Fp for 0 < i ≤ L, q = ph. Then

C̃L ⊆ C̃L−1 ⊆ . . . ⊆ C̃1 ⊆ C̃0 = Fn
p

is a sequence of p-ary codes s.t.

• dim(C̃i) ≥ n− h(n− `i + g− 1)

• d(C̃i) > n− `i

Choosing e, h, L, `i, ‘appropriately’, gives us a construction-D lattice with the
normalized minimum distance as in the main result.



Choices of the parameters to achieve the claimed min. distance
Theorem: For a constant ε > 0, there is a family of lattices L ⊂ Rn with normalized
minimum distance

λ1(Λ)

det(Λ)1/n
= Ω

( √
n

(log n)ε+o(1)

)
.

These lattices are list decodable to within distance
√

1/2 · λ1(Λ) in poly(n) time.

Proof sketch:
1. Fix a prime p and a parameter κ(ε)

2. Let r ≈ logp κ be a power of p and e ≈ logr κ. Set q = r2 = ph.

3. Choose n ≈ re+1 rational points on Ke

4. Set `i = n− p2i and L = b12 logp(n/h− g)c

The choice of L ensures that dim(C̃L) > 0 and that

λ1(Λ) = pL >

√
n

log log n
.

The choice of `i leads to det(Λ)1/n ≤ (logp(n))ε.
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λ1(Λ) = pL >

√
n

log log n
.

The choice of `i leads to det(Λ)1/n ≤ (logp(n))ε.
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1/2 · λ1(Λ) in poly(n) time.
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What about decoding?

• We know how to efficiently decode Ci’s thanks to Guruswami-Sudan [GS]
list decoding algorithm
• There is a soft decision decoding technique due to
Koetter-Vardy [KV] that allows to decode BCH codes using a
Reed-Solomon decoder.

Idea: adapt Guruswami-Sudan decoding to soft decision decoding.

In hard decision a decoder receives on input y ∈ Rn and outputs a list of
vectors close (in `2 norm) to y.

In soft decision a decoder receives on a reliability matrix Π ∈ R|Fq |×n, where
Πi,j describes the probability that the transmitted codeword has symbol
αi ∈ Fq in the j-th position. It outputs a list of vectors that are ‘related’ to Π.
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Soft decision decoder for GS subfield subcodes

Where do we get Π from?

• it is either given by the communication channel (original motivation for
soft decision decoding)
• or it can be constructed from the received word y as shown by
Mook-Peikert [MP].

An adaptation of Koetter-Vardy decoder for BCH to GS codes gives

Theorem For ε > 0, R – code rate, and d – min. distance of GS codes
defined over Fq, there exists an algorithm for decoding C̃ ⊂ Fn

p , receiving on
input y ∈ Rn, calls Koetter-Vardy soft-decision decoder and outputs
codewords c ∈ C̃ that satisfy

‖y − c‖ < (1− ε)d
2
,

in time polynomial in n, log q, and 1/ε.
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From decoding subfield subcodes to decoding ΛL

Theorem (Mook-Peikert [MP]) Let L ≥ 0 be an integer and let ΛL be a
construction-D lattice built from a tower

C̃L ⊆ C̃L−1 ⊆ . . . ⊆ C̃1 ⊆ C̃0 = Fn
p .

Let Di be a list decoder for C̃i that decodes up to Euclidean distance
ei = pie0 for some 0 < e0 < p/2 for all 0 ≤ i ≤ L.

Then there is an algorithm that given on input y ∈ Rn and access to Di,
outputs a list of vectors v ∈ ΛL s.t.

‖y − v‖ ≤ λ1(ΛL)/
√

2.

If Di run in poly(n, log p) time, then this algorithm also runs in poly(n, log p)
time.

Conclusion: we have an efficient algorithm to decode ΛL.
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More details on soft decision decoding

Input to decoder: reliability matrix Π, P = {P1, . . . , Pn}

Precomputation: convert Π ∈ R|Fq |×n into a multiplicity matrix M ∈ Z|Fq |×n.

Assume Fq = [α1, . . . , αq].

All known algebraic decoders work in two steps:

I. (Soft) Interpolation step. Goal: find a polynomial Q(y) ∈ K[y] s.t.:

1. Q(αi)[Pj] is zero of multiplicity Mi,j for all Mi,j > 0.
2. Q(f) ∈ L(`P∞) for any f ∈ L(`P∞).

Idea: Assign Mi,j = 0 for i’s that index elements form Fq \ Fp.

II. Factorisation step: factor Q(y) over K to obtain factors of the form
(y − fi)r, where fi’s form a list of potential encoded messages.
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Open problems and directions

• Other choices of codes may be better (tried Goppa codes but received the
same quality as construction-D from BCH codes)?

• Other ways to map a code over Fph to a code over Fp (tried trace codes
but could not get a good bound on the minimum distance)?

Thank you! Q?

The preprint can be found at
https://crypto-kantiana.com/elena.kirshanova/Papers/DLattice.pdf

https://crypto-kantiana.com/elena.kirshanova/Papers/DLattice.pdf
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