Lattices\&Codes: Algorithmic Connections and New Constructions

Elena Kirshanova
Technology Innovation Institute, Abu Dhabi, UAE MWCC 2024

Agenda

Part I. Intro: Lattices\&Codes
Part II. Sieving for codes
Part III (if time). Lattice constructions from codes

Part I
Intro: Lattices\&Codes

Lattices\&Codes: definitions

Lattice \mathcal{L} - additive group in \mathbb{R}^{n}
Euclidean metric $\left(\ell_{2}\right)$
$\|\mathbf{v}\|_{2}$

Code \mathcal{C} - additive group in \mathbb{F}_{p}^{n}
ℓ_{1} - metric
$w t(\mathbf{v})=|\{i: \mathbf{v}[i]>0\}|-$ Hamming weight
\mathcal{L}
Lattice \mathcal{L} - additive group in \mathbb{R}^{n}
Euclidean metric $\left(\ell_{2}\right)$
$\|\mathrm{v}\|_{2}$
$\lambda_{1}(\mathcal{L})$ - shortest vector
Minkowski bound on $\lambda_{1}(\mathcal{L})$

Code \mathcal{C} - additive group in \mathbb{F}_{p}^{n}
ℓ_{1} - metric
$w t(\mathrm{v})=|\{i: \mathrm{v}[i]>0\}|-$ Hamming weight $d(\mathcal{C})$-min. distance
Gilbert-Varshamov bound

Lattices\&Codes: hard problems

$$
\mathcal{L}
$$

Finding a short vector

Given $A \in \mathbb{Z}_{q}^{(n-k) \times n}$, find $\mathrm{x} \in \mathbb{Z}_{q}^{n}$ s.t. $\|\mathrm{x}\|<B$ and $A \mathrm{x}=\mathbf{0} \bmod q$

Given $H \in \mathbb{F}_{p}^{(n-k) \times n}, \mathbf{s} \in \mathbb{F}_{p}^{n-k}$, find $\mathbf{e} \in \mathbb{F}_{p}^{n}$
s.t. $w t(\mathrm{e})=\omega$ and $H \mathrm{e}=\mathrm{s}$

$$
\mathcal{L}^{\perp}(A)=\left\{\mathbf{x} \in \mathbb{Z}^{m}: A \mathbf{x}=\mathbf{0} \bmod q\right\}
$$ aka the SIS problem

Lattices\&Codes: hard problems

$$
\mathcal{L}
$$

Finding a short vector

Given $A \in \mathbb{Z}_{q}^{(n-k) \times n}$, find $\mathrm{x} \in \mathbb{Z}_{q}^{n}$ s.t. $\|\mathrm{x}\|<B$ and $A \mathrm{x}=\mathbf{0} \bmod q$

Given $H \in \mathbb{F}_{p}^{(n-k) \times n}, \mathbf{s} \in \mathbb{F}_{p}^{n-k}$, find $\mathrm{e} \in \mathbb{F}_{p}^{n}$
s.t. $w t(\mathrm{e})=\omega$ and $H \mathrm{e}=\mathrm{s}$

-1
$\mathcal{L}^{\perp}(A)=\left\{\mathbf{x} \in \mathbb{Z}^{m}: A \mathbf{x}=\mathbf{0} \bmod q\right\}$ aka the SIS problem

Algorithms for finding a short vector:

Enumeration algorithms
Sieving for lattice vectors

ISD algorithms
Sieving for codes ${ }^{1}$
${ }^{1}$ Guo, Q., Johansson, T., Nguyen, V.: A new sieving-style information-set decoding algorithm. Ducas L, Esser A., Etinksi S., Kirshanova E.: Asymptotics and omprovements of sieving for codes

Part II
Sieving for codes

Idea of sieving in lattices

Saturate space with enough lattice vectors so that their sums give short(er) vectors

Idea of sieving in lattices

Saturate space with enough lattice vectors so that their sums give short(er) vectors

Idea of sieving in lattices

Saturate space with enough lattice vectors so that their sums give short(er) vectors

Idea of sieving in lattices

Saturate space with enough lattice vectors so that their sums give short(er) vectors

Idea of sieving in lattices

Saturate space with enough lattice vectors so that their sums give short(er) vectors

Idea of sieving in lattices

Saturate space with enough lattice vectors so that their sums give short(er) vectors

Questions to be addressed: size of L (memory), time to find all close pairs (complexity). Best known algorithm for the short vector problem.

Idea of sieving in binary codes

Keep weight constant, move gradually from subcodes $\mathcal{C}_{i}:=\{\mathbf{e}:(H \mathbf{e})[0: i]=0\}$ to the code $\mathcal{C}: \mathcal{C}_{1} \subset \mathcal{C}_{2} \ldots \subset \mathcal{C}$. Choose some weight $p \leq \omega$.

Idea of sieving in binary codes

Keep weight constant, move gradually from subcodes $\mathcal{C}_{i}:=\{\mathbf{e}:(H \mathbf{e})[0: i]=0\}$ to the code $\mathcal{C}: \mathcal{C}_{1} \subset \mathcal{C}_{2} \ldots \subset \mathcal{C}$. Choose some weight $p \leq \omega$.

Idea of sieving in binary codes

Keep weight constant, move gradually from subcodes $\mathcal{C}_{i}:=\{\mathbf{e}:(H \mathbf{e})[0: i]=0\}$ to the code $\mathcal{C}: \mathcal{C}_{1} \subset \mathcal{C}_{2} \ldots \subset \mathcal{C}$. Choose some weight $p \leq \omega$.

Idea of sieving in binary codes

Keep weight constant, move gradually from subcodes $\mathcal{C}_{i}:=\{\mathbf{e}:(H \mathbf{e})[0: i]=0\}$ to the code $\mathcal{C}: \mathcal{C}_{1} \subset \mathcal{C}_{2} \ldots \subset \mathcal{C}$. Choose some weight $p \leq \omega$.

Setting up ISD with Sieving: systematic form

Apply permutations on H until achieve the correct weight distribution on $\mathbf{e}_{1}, \mathbf{e}_{2}$.

Sieving for codes: the algorithm

1. Randomly permute H and compute $H^{\prime \prime}$.

Sieving for codes: the algorithm

1. Randomly permute H and compute $H^{\prime \prime}$.
2. Construct $L_{0},\left|L_{0}\right|=N$ with vectors \mathbf{v} s.t. $w t(\mathbf{v})=p$ and $\left(H^{\prime \prime} \mathbf{v}\right)[0]=0$.

Sieving for codes: the algorithm

1. Randomly permute H and compute $H^{\prime \prime}$.
2. Construct $L_{0},\left|L_{0}\right|=N$ with vectors \mathbf{v} s.t. $w t(\mathbf{v})=p$ and $\left(H^{\prime \prime} \mathbf{v}\right)[0]=0$.
3. For $i=1, \ldots, n$:
3.1 Find all pairs $\mathbf{v}, \mathbf{v} \in L_{i-1}$ with $w t\left(\mathbf{v}+\mathbf{v}^{\prime}\right)=p$, store them in L_{i}
3.2 Discard all $\mathbf{v} \in L_{i}$ s.t. $\mathbf{v} \notin \mathcal{C}_{i}$

Sieving for codes: the algorithm

1. Randomly permute H and compute $H^{\prime \prime}$.
2. Construct $L_{0},\left|L_{0}\right|=N$ with vectors \mathbf{v} s.t. $w t(\mathbf{v})=p$ and $\left(H^{\prime \prime} \mathbf{v}\right)[0]=0$.
3. For $i=1, \ldots, n$:
3.1 Find all pairs $\mathbf{v}, \mathbf{v} \in L_{i-1}$ with $w t\left(\mathbf{v}+\mathbf{v}^{\prime}\right)=p$, store them in L_{i}
3.2 Discard all $\mathbf{v} \in L_{i}$ s.t. $\mathbf{v} \notin \mathcal{C}_{i}$
4. Check all $\mathbf{v} \in L_{n}$ for $\mathbf{v} \stackrel{?}{=} \mathbf{e}^{\prime \prime}$

Sieving for codes: the algorithm

1. Randomly permute H and compute $H^{\prime \prime}$.
2. Construct $L_{0},\left|L_{0}\right|=N$ with vectors \mathbf{v} s.t. $w t(\mathbf{v})=p$ and $\left(H^{\prime \prime} \mathbf{v}\right)[0]=0$.
3. For $i=1, \ldots, n$:
3.1 Find all pairs $\mathbf{v}, \mathbf{v} \in L_{i-1}$ with $w t\left(\mathbf{v}+\mathbf{v}^{\prime}\right)=p$, store them in L_{i}
3.2 Discard all $\mathbf{v} \in L_{i}$ s.t. $\mathbf{v} \notin \mathcal{C}_{i}$
4. Check all $\mathbf{v} \in L_{n}$ for $\mathbf{v} \stackrel{?}{=} \mathbf{e}^{\prime \prime}$

Runtime

Success Probability:

$$
\begin{array}{l}
\frac{\binom{n-k-\ell}{w-p}\binom{k+\ell}{p}}{\binom{n}{w}}
\end{array} \underbrace{\operatorname{Pr}\left[w t\left(\mathbf{e}^{\prime \prime}\right)=p\right]}_{\frac{N}{\binom{k+\ell}{p} / 2^{\ell}}} \cdot \operatorname{Pr}\left[\mathbf{e}^{\prime \prime} \in L_{n}\right])
$$

Time per iteration (Steps 1-4)
$n \cdot T_{\mathcal{N N}}$
$T_{\mathcal{N N}}$ - runtime of Near Neighbor search (Step 3.1)

Glimpse of the analysis

How large is N ?

How large is $T_{\mathcal{N N}}$?

Glimpse of the analysis

How large is N ?

- Want: $\left|\mathbf{w} \in L_{i}: \mathbf{w} \in \mathcal{C}_{i}\right| \geq N$
- Each new parity-check equation eliminates half of the list elements:

$$
\operatorname{Pr}\left[\mathbf{w} \in \mathcal{C}_{i} \left\lvert\, \mathbf{w} \in L_{i}=\operatorname{Pr}\left[\mathbf{w} \in \mathcal{C}_{i} \mid \mathbf{w} \in \mathcal{C}_{i-1}\right]=\frac{\left|\mathcal{C}_{i}\right|}{\left|\mathcal{C}_{i-1}\right|}=1 / 2\right.\right.
$$

- We want to keep (asymptotically) the same list sizes:

$$
\mathbb{E}\left[\left|\mathbf{w} \in L_{i}: \mathbf{w} \in \mathcal{C}_{i}\right|\right]=\mathbb{E}\left[\left|L_{i}\right|\right] / 2 \stackrel{!}{\geq}\left|L_{i-1}\right|=: N
$$

- $\mathbb{E}\left[\left|L_{i}\right|\right]=\left|L_{i-1}\right|^{2} \cdot \operatorname{Pr}\left[w t\left(\mathbf{v}+\mathbf{v}^{\prime}\right)=p: w t(\mathbf{v})=w t\left(\mathbf{v}^{\prime}\right)=p\right]=$

$$
=N^{2} \cdot \frac{\binom{k+\ell}{p} \cdot\binom{p}{p / 2}\binom{k+\ell-p}{p / 2}}{\binom{k+\ell}{p}^{2}}=\stackrel{!}{2} N \quad \Leftrightarrow \quad N \geq \frac{2\binom{k+\ell}{p}}{\binom{p}{p / 2}\binom{k+\ell-p}{p / 2}}
$$

How large is $T_{\mathcal{N N}}$?

Glimpse of the analysis

How large is N ?

- Want: $\left|\mathbf{w} \in L_{i}: \mathbf{w} \in \mathcal{C}_{i}\right| \geq N$
- Each new parity-check equation eliminates half of the list elements:

$$
\operatorname{Pr}\left[\mathbf{w} \in \mathcal{C}_{i} \left\lvert\, \mathbf{w} \in L_{i}=\operatorname{Pr}\left[\mathbf{w} \in \mathcal{C}_{i} \mid \mathbf{w} \in \mathcal{C}_{i-1}\right]=\frac{\left|\mathcal{C}_{i}\right|}{\left|\mathcal{C}_{i-1}\right|}=1 / 2\right.\right.
$$

- We want to keep (asymptotically) the same list sizes:

$$
\mathbb{E}\left[\left|\mathbf{w} \in L_{i}: \mathbf{w} \in \mathcal{C}_{i}\right|\right]=\mathbb{E}\left[\left|L_{i}\right|\right] / 2 \stackrel{!}{\geq}\left|L_{i-1}\right|=: N
$$

- $\mathbb{E}\left[\left|L_{i}\right|\right]=\left|L_{i-1}\right|^{2} \cdot \operatorname{Pr}\left[w t\left(\mathbf{v}+\mathbf{v}^{\prime}\right)=p: w t(\mathbf{v})=w t\left(\mathbf{v}^{\prime}\right)=p\right]=$

$$
=N^{2} \cdot \frac{\binom{k+\ell}{p} \cdot\binom{p}{p / 2}\binom{k+\ell-p}{p / 2}}{\binom{k+\ell}{p}^{2}}=\stackrel{!}{\geq} 2 N \quad \Leftrightarrow \quad N \geq \frac{2\binom{k+\ell}{p}}{\binom{p}{p / 2}\binom{k+\ell-p}{p / 2}}
$$

How large is $T_{\mathcal{N N}}$?
Depends on the algorithm...

ISD with Sieving: asymptotics (worst-case rate, GV bound error)

- $w t\left(\mathbf{v}_{1}\right)=w t\left(\mathbf{v}_{2}\right)=w t\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)=p \Rightarrow w t\left(\mathbf{v}_{1} \wedge \mathbf{v}_{2}\right)=p / 2$
- Idea: Enumerate potential overlap for each vector

- $w t\left(\mathbf{v}_{1}\right)=w t\left(\mathbf{v}_{2}\right)=w t\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)=p \Rightarrow w t\left(\mathbf{v}_{1} \wedge \mathbf{v}_{2}\right)=p / 2$
- Idea: put another random code on top, decode all v_{i} 's w.r.t. code. Close v_{i} 's will decode to the same codeword(s).

- $w t\left(\mathbf{v}_{1}\right)=w t\left(\mathbf{v}_{2}\right)=w t\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)=p \Rightarrow w t\left(\mathbf{v}_{1} \wedge \mathbf{v}_{2}\right)=p / 2$
- Idea: a Random Product Code (RPC) on top, decode all \mathbf{v}_{i} 's w.r.t. code. Close \mathbf{v}_{i} 's will decode to the same codeword(s). But now we can find all of them faster.

ISD with Sieving: asymptotics (worst-case rate, GV bound error)

- $w t\left(\mathbf{v}_{1}\right)=w t\left(\mathbf{v}_{2}\right)=w t\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)=p \Rightarrow w t\left(\mathbf{v}_{1} \wedge \mathbf{v}_{2}\right)=p / 2$
- Idea: a Random Product Code (RPC) on top, decode all \mathbf{v}_{i} 's w.r.t. code. Close \mathbf{v}_{i} 's will decode to the same codeword(s). But now we can find all of them faster.

Conclusions

- Take-away: lattice sieving including NN technique translate to codes in Hamming metric

Conclusions

- Take-away: lattice sieving including NN technique translate to codes in Hamming metric
- Open research direction: k-sieve (time-memory trade-offs)
- Full version: https://eprint.iacr.org/2023/1577
- Slides:
https://crypto-kantiana.com/elena.kirshanova/talks/MWCC24.pdf

Conclusions

- Take-away: lattice sieving including NN technique translate to codes in Hamming metric
- Open research direction: k-sieve (time-memory trade-offs)
- Full version: https://eprint.iacr.org/2023/1577
- Slides:
https://crypto-kantiana.com/elena.kirshanova/talks/MWCC24.pdf

Part III
From codes to lattices: dense lattice construction

Lattice invariants

Minimum

$$
\begin{gathered}
\lambda_{1}(\Lambda)=\min _{\mathbf{v} \in \Lambda \backslash \mathbf{0}}\|\mathbf{v}\|_{2} \\
\operatorname{det}(\Lambda)=\left|\operatorname{det}\left(\mathbf{b}_{i}\right)_{i}\right| \\
\text { Minkowski bound } \\
\lambda_{1}(\Lambda) \leq \sqrt{n} \cdot \operatorname{det}(\Lambda)^{\frac{1}{n}} \\
\text { Normalized min. distance }
\end{gathered}
$$

$$
\sqrt{\gamma(\Lambda)}=\lambda_{1}(\Lambda) / \operatorname{det}(\Lambda)^{\frac{1}{n}}
$$

A lattice is a set $\Lambda=\left\{\sum_{i \leq n} x_{i} \mathbf{b}_{i}: x_{i} \in \mathbb{Z}\right\}$ for linearly independent $\mathbf{b}_{i} \in \mathbb{R}^{n}$. $\left\{\mathbf{b}_{i}\right\}_{i}$ is a basis of Λ

$$
\sqrt{\gamma(\Lambda)}=\lambda_{1}(\Lambda) / \operatorname{det}(\Lambda)^{\frac{1}{n}} \leq \sqrt{n}
$$

We are interested in

1. explicit construction of a lattice with as large $\gamma(\Lambda)$ as possible
2. with an efficient (list-) decoding algorithm (runtime at most poly (n)).

$$
\sqrt{\gamma(\Lambda)}=\lambda_{1}(\Lambda) / \operatorname{det}(\Lambda)^{\frac{1}{n}} \leq \sqrt{n}
$$

We are interested in

1. explicit construction of a lattice with as large $\gamma(\Lambda)$ as possible
2. with an efficient (list-) decoding algorithm (runtime at most poly (n)).

Why? We might want to use lattice as codes, hence we care about their decoding properties.

A 'random' lattice (an example will given later) is expected to achieve $\sqrt{\gamma(\Lambda)} \sim \sqrt{n}$, but we do not know how to efficiently decode them.

State-of-the art on $\sqrt{\gamma(\Lambda)}(\Omega()$ for $\sqrt{\gamma(\Lambda)}$ is omitted)

Lattice Λ	$\sqrt{\gamma(\Lambda)}$
Barnes-Wall lattice $[\mathrm{BW}]$	$n^{1 / 4}$

Defined by the rows of

$$
\begin{aligned}
& \mathrm{BW}^{k}=\left[\begin{array}{ll}
1 & 1 \\
0 & \phi
\end{array}\right]^{\otimes k} \subset \mathbb{C}^{2^{k}}, \\
& \text { where } \phi=1+i
\end{aligned}
$$

State-of-the art on $\sqrt{\gamma(\Lambda)}(\Omega()$ for $\sqrt{\gamma(\Lambda)}$ is omitted)

For $(\mathbb{Z} / m \mathbb{Z})^{\star}$,
$p_{i}-$ primes, $1 \leq i \leq n$
$\phi: \mathbb{Z}^{n} \rightarrow(\mathbb{Z} / m \mathbb{Z})^{\star}$
$\left(x_{1}, \ldots, x_{n}\right) \mapsto \prod_{i=1}^{n} p_{i}^{x_{i}}$
$\Lambda_{\text {dlog }}=\operatorname{ker} \phi$.

State-of-the art on $\sqrt{\gamma(\Lambda)}(\Omega()$ for $\sqrt{\gamma(\Lambda)}$ is omitted)

Lattice Λ	$\sqrt{\gamma(\Lambda)}$
Barnes-Wall lattice [BW]	$n^{1 / 4}$
Discrete Logarithm Lattices [DP]	$\frac{\sqrt{n}}{\log n}$
Construction-A lattice from Reed-Solomon codes [BP]	$\sqrt{\frac{n}{\log n}}$

Constriction-A:

Take $B \in(\mathbb{Z} / q \mathbb{Z})^{n \times m}-$ a generator matrix of a code. $\Lambda_{\mathrm{A}}=\mathbb{Z}^{n} B+q \mathbb{Z}^{m} \subset \mathbb{Z}^{m}$ is a construction-A lattice.

State-of-the art on $\sqrt{\gamma(\Lambda)}(\Omega()$ for $\sqrt{\gamma(\Lambda)}$ is omitted)

Lattice Λ	$\sqrt{\gamma(\Lambda)}$
Barnes-Wall lattice [BW]	$n^{1 / 4}$
Discrete Logarithm Lattices [DP]	$\frac{\sqrt{n}}{\log n}$
Construction-A lattice from Reed-Solomon codes [BP]	$\sqrt{\frac{n}{\log n}}$
Construction-D lattice from BCH codes [MP]	$\sqrt{\frac{n}{\log n}}$

Lifting sequences of codes to lattices

State-of-the art on $\sqrt{\gamma(\Lambda)}(\Omega()$ for $\sqrt{\gamma(\Lambda)}$ is omitted)

Lattice Λ	$\sqrt{\gamma(\Lambda)}$
Barnes-Wall lattice [BW]	$n^{1 / 4}$
Discrete Logarithm Lattices [DP]	$\frac{\sqrt{n}}{\log n}$
Construction-A lattice from Reed-Solomon codes [BP]	$\sqrt{\frac{n}{\log n}}$
Construction-D lattice from BCH codes [MP]	$\sqrt{\frac{n}{\log n}}$
Construction-D lattice from subfield subcodes of Garcia-Stichtenoth codes [KM]	$\frac{\sqrt{n}}{(\log n)^{\varepsilon+o(1)}}$

Kirshanova-Malygina'23. This talk

Theorem: For a constant $\varepsilon>0$, there is a family of lattices $\mathcal{L} \subset \mathbb{R}^{n}$ with normalized minimum distance

$$
\frac{\lambda_{1}(\Lambda)}{\operatorname{det}(\Lambda)^{1 / n}}=\Omega\left(\frac{\sqrt{n}}{(\log n)^{\varepsilon+o(1)}}\right) .
$$

These lattices are list decodable to within distance $\sqrt{1 / 2} \cdot \lambda_{1}(\Lambda)$ in poly (n) time.

Construction-D lattice: simplified definition

- Fix an integer $L \geq 0$, let

$$
C_{L} \subseteq C_{L-1} \subseteq \ldots \subseteq C_{1} \subseteq C_{0}=\mathbb{F}_{p}^{n}
$$

be a tower of p-ary codes of length n, where $\operatorname{dim}\left(C_{i}\right)=k_{i}$.

Construction-D lattice: simplified definition

- Fix an integer $L \geq 0$, let

$$
C_{L} \subseteq C_{L-1} \subseteq \ldots \subseteq C_{1} \subseteq C_{0}=\mathbb{F}_{p}^{n}
$$

be a tower of p-ary codes of length n, where $\operatorname{dim}\left(C_{i}\right)=k_{i}$.

- Let $\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}$ be a basis of \mathbb{F}_{p}^{n} s.t.

$$
\mathbf{b}_{1}, \ldots, \mathbf{b}_{k_{i}} \text { is a basis of } C_{i} \text { for all } i=0, \ldots, L
$$

- Define a set of distinguished \mathbb{Z}^{n} representatives of $\mathbf{c}_{i}=\sum_{j=1}^{k_{i}} a_{j} \mathbf{b}_{j} \in C_{i}$ as

$$
\overline{\mathbf{c}}_{i}=\sum_{j=1}^{k_{i}} \bar{a}_{j} \overline{\mathbf{b}}_{j} \in \mathbb{Z}^{n} \quad \text { where } \bar{a}_{j} \in\{0, \ldots p-1\} \subset \mathbb{Z}
$$

Construction-D lattice: simplified definition

- Fix an integer $L \geq 0$, let

$$
C_{L} \subseteq C_{L-1} \subseteq \ldots \subseteq C_{1} \subseteq C_{0}=\mathbb{F}_{p}^{n}
$$

be a tower of p-ary codes of length n, where $\operatorname{dim}\left(C_{i}\right)=k_{i}$.

- Let $\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}$ be a basis of \mathbb{F}_{p}^{n} s.t.

$$
\mathbf{b}_{1}, \ldots, \mathbf{b}_{k_{i}} \text { is a basis of } C_{i} \text { for all } i=0, \ldots, L
$$

- Define a set of distinguished \mathbb{Z}^{n} representatives of $\mathbf{c}_{i}=\sum_{j=1}^{k_{i}} a_{j} \mathbf{b}_{j} \in C_{i}$ as

$$
\overline{\mathbf{c}}_{i}=\sum_{j=1}^{k_{i}} \bar{a}_{j} \overline{\mathbf{b}}_{j} \in \mathbb{Z}^{n} \quad \text { where } \bar{a}_{j} \in\{0, \ldots p-1\} \subset \mathbb{Z}
$$

- Let $\mathcal{L}_{0}=\mathbb{Z}^{n}$, and for each $i=1, \ldots, L$ define

$$
\Lambda_{i}=\bar{C}_{i}+p \Lambda_{i-1}, \quad \bar{C}_{i}=\left\{\bar{c}_{i}: c_{i} \in C_{i}\right\}
$$

- The construction-D for the tower $\left\{C_{i}\right\}$ is $\Lambda=\Lambda_{L}$.

Main idea

- Construct a sequence of codes $C_{L} \subseteq C_{L-1} \subseteq \ldots \subseteq C_{1} \subseteq C_{0}=\mathbb{F}_{q}^{n}$, each C_{i} is an algebraic-geometric code from a specific function field, the Garcia-Stichtenoth field.
- Such AG-codes are defined over $\mathbb{F}_{p^{h}}$ for an even h, hence go to subfield-subcodes:

$$
C_{L} \cap \mathbb{F}_{p}^{n} \subseteq C_{L-1} \cap \mathbb{F}_{p}^{n} \subseteq \ldots C_{0} \cap \mathbb{F}_{p}^{n}=\mathbb{P}_{p}^{n}
$$

- We know $\operatorname{dim}\left(C_{i} \cap \mathbb{F}_{p}^{n}\right)$ and minimal distance of $C_{i} \cap \mathbb{F}_{p}^{n}$ for all i.
- Compute the minimum $\lambda_{1}\left(\Lambda_{L}\right)$ of the construction-D lattice Λ_{L}.
- Compute (an upper bound on) $\operatorname{det}\left(\Lambda_{L}\right)$.
- Conclude on $\gamma(\Lambda)=\lambda_{1}(\Lambda) / \operatorname{det}\left(\Lambda_{L}\right)$.
- For efficient decoding, adapt soft decision decoding algorithm of Koetter-Vardy.

Conclusions

- Take you favourite code (may be an AG code) with a poly-time decoding algorithm.
- Construct a sequence of codes with a lower bound on min. distance and on dimension.
- These suffice to derive $\lambda_{1}(\Lambda)$ and (a lower bound) on $\operatorname{det}(\Lambda)$.
- Check if you beat the state-of-the-art.
- Interesting candidate: Bassa-Ritzenthaler towers, (arXiv:1807.05714)

