Lattices&Codes: Algorithmic Connections and New Constructions

Elena Kirshanova

Technology Innovation Institute, Abu Dhabi, UAE

MWCC 2024

Part I. Intro: Lattices&Codes

Part II. Sieving for codes

Part III (if time). Lattice constructions from codes

Part I

Intro: Lattices&Codes

Lattices&Codes: definitions

 \mathcal{L}

Lattice \mathcal{L} – additive group in \mathbb{R}^n Euclidean metric (ℓ_2) $\|\mathbf{v}\|_2$ \mathcal{C}

Code \mathcal{C} – additive group in \mathbb{F}_p^n ℓ_1 - metric $wt(\mathbf{v}) = |\{i\,:\,\mathbf{v}[i]>0\}|$ - Hamming weight Lattices&Codes: definitions

 \mathcal{L}

Lattice \mathcal{L} – additive group in \mathbb{R}^n Euclidean metric (ℓ_2) $\|\mathbf{v}\|_2$ $\lambda_1(\mathcal{L})$ - shortest vector Minkowski bound on $\lambda_1(\mathcal{L})$ $\mathbf{b_1}$ $\mathbf{b_2}$

 \mathcal{C}

Code C – additive group in \mathbb{F}_p^n ℓ_1 - metric $wt(\mathbf{v}) = |\{i \, : \, \mathbf{v}[i] > 0\}|$ - Hamming weight d(C)-min. distance Gilbert-Varshamov bound

Lattices&Codes: hard problems

L.

С

Finding a short vector

s.t. $\|\mathbf{x}\| < B$ and $A\mathbf{x} = \mathbf{0} \mod q$

Given $A \in \mathbb{Z}_{q}^{(n-k) \times n}$, find $\mathbf{x} \in \mathbb{Z}_{q}^{n}$ Given $H \in \mathbb{F}_{p}^{(n-k) \times n}$, $\mathbf{s} \in \mathbb{F}_{p}^{n-k}$, find $\mathbf{e} \in \mathbb{F}_{p}^{n}$ s.t. $wt(\mathbf{e}) = \omega$ and $H\mathbf{e} = \mathbf{s}$

Lattices&Codes: hard problems

L.

С

Finding a short vector

s.t. $\|\mathbf{x}\| < B$ and $A\mathbf{x} = \mathbf{0} \mod q$

<u>Given $A \in \mathbb{Z}_{a}^{(n-k) \times n}$ </u>, find $\mathbf{x} \in \mathbb{Z}_{a}^{n}$ Given $H \in \mathbb{F}_{p}^{(n-k) \times n}$, $\mathbf{s} \in \mathbb{F}_{p}^{n-k}$, find $\mathbf{e} \in \mathbb{F}_{p}^{n}$ s.t. $wt(\mathbf{e}) = \omega$ and $H\mathbf{e} = \mathbf{s}$

L

 \mathcal{C}

Algorithms for finding a short vector:

Enumeration algorithmsISD algorithmsSieving for lattice vectorsSieving for codes1

¹Guo, Q., Johansson, T., Nguyen, V.: A new sieving-style information-set decoding algorithm. Ducas L, Esser A., Etinksi S., Kirshanova E.: Asymptotics and omprovements of sieving for codes

Part II

Sieving for codes

Saturate space with enough lattice vectors so that their sums give short(er) vectors

Questions to be addressed: size of L (memory), time to find all close pairs (complexity). Best known algorithm for the short vector problem.

Keep weight constant, move gradually from subcodes $C_i := \{ \mathbf{e} : (H\mathbf{e})[0:i] = 0 \}$ to the code $C: C_1 \subset C_2 \ldots \subset C$. Choose some weight $p \leq \omega$.

Keep weight constant, move gradually from subcodes $C_i := \{ \mathbf{e} : (H\mathbf{e})[0:i] = 0 \}$ to the code $C: C_1 \subset C_2 \ldots \subset C$. Choose some weight $p \leq \omega$.

 $wt(\mathbf{e}') = p$

Keep weight constant, move gradually from subcodes $C_i := \{ \mathbf{e} : (H\mathbf{e})[0:i] = 0 \}$ to the code $C: C_1 \subset C_2 \ldots \subset C$. Choose some weight $p \leq \omega$.

Keep weight constant, move gradually from subcodes $C_i := \{ \mathbf{e} : (H\mathbf{e})[0:i] = 0 \}$ to the code $C: C_1 \subset C_2 \ldots \subset C$. Choose some weight $p \leq \omega$.

Apply permutations on H until achieve the correct weight distribution on e_1, e_2 .

1. Randomly permute H and compute H''.

- 1. Randomly permute H and compute H''.
- 2. Construct L_0 , $|L_0| = N$ with vectors **v** s.t. $wt(\mathbf{v}) = p$ and $(H''\mathbf{v})[0] = 0$.

- 1. Randomly permute H and compute H''.
- 2. Construct L_0 , $|L_0| = N$ with vectors \mathbf{v} s.t. $wt(\mathbf{v}) = p$ and $(H''\mathbf{v})[0] = 0$.
- 3. For i = 1, ..., n:
 - 3.1 Find all pairs $\mathbf{v}, \mathbf{v} \in L_{i-1}$ with $wt(\mathbf{v} + \mathbf{v}') = p$, store them in L_i
 - **3.2** Discard all $\mathbf{v} \in L_i$ s.t. $\mathbf{v} \notin C_i$

- 1. Randomly permute H and compute H''.
- 2. Construct L_0 , $|L_0| = N$ with vectors \mathbf{v} s.t. $wt(\mathbf{v}) = p$ and $(H''\mathbf{v})[0] = 0$.
- 3. For i = 1, ..., n:
 - **3.1** Find all pairs $\mathbf{v}, \mathbf{v} \in L_{i-1}$ with $wt(\mathbf{v} + \mathbf{v}') = p$, store them in L_i
 - 3.2 Discard all $\mathbf{v} \in L_i$ s.t. $\mathbf{v} \notin C_i$
- 4. Check all $\mathbf{v} \in L_n$ for $\mathbf{v} \stackrel{?}{=} \mathbf{e}''$

1. Randomly permute H and compute H''.

- 2. Construct L_0 , $|L_0| = N$ with vectors \mathbf{v} s.t. $wt(\mathbf{v}) = p$ and $(H''\mathbf{v})[0] = 0$.
- **3**. For i = 1, ..., n:
 - 3.1 Find all pairs $\mathbf{v}, \mathbf{v} \in L_{i-1}$ with $wt(\mathbf{v} + \mathbf{v}') = p$, store them in L_i
 - **3.2** Discard all $\mathbf{v} \in L_i$ s.t. $\mathbf{v} \notin C_i$
- **4**. Check all $\mathbf{v} \in L_n$ for $\mathbf{v} \stackrel{?}{=} \mathbf{e}''$

Runtime

Success Probability:

$$\underbrace{\Pr[wt(\mathbf{e}'') = p]}_{\frac{\binom{n-k-\ell}{w-p}\binom{k+\ell}{p}}{\binom{n}{w}}} \underbrace{\Pr[\mathbf{e}'' \in L_n]}{\frac{N}{\binom{k+\ell}{p}/2^\ell}}$$

Time per iteration (Steps 1–4)

 $n \cdot T_{NN}$ T_{NN} – runtime of Near Neighbor search (Step 3.1) Glimpse of the analysis How large is N?

How large is T_{NN} ?

Glimpse of the analysis How large is *N*?

• Want:
$$|\mathbf{w} \in L_i : \mathbf{w} \in \mathcal{C}_i| \ge N$$

• Each new parity-check equation eliminates half of the list elements:

$$\Pr[\mathbf{w} \in \mathcal{C}_i \mid \mathbf{w} \in L_i = \Pr[\mathbf{w} \in \mathcal{C}_i \mid \mathbf{w} \in \mathcal{C}_{i-1}] = \frac{|\mathcal{C}_i|}{|\mathcal{C}_{i-1}|} = 1/2$$

• We want to keep (asymptotically) the same list sizes:

$$\mathbb{E}\left[|\mathbf{w} \in L_{i} : \mathbf{w} \in \mathcal{C}_{i}|\right] = \mathbb{E}\left[|L_{i}|\right]/2 \stackrel{!}{\geq} |L_{i-1}| =: N$$
•
$$\mathbb{E}\left[|L_{i}|\right] = |L_{i-1}|^{2} \cdot \Pr[wt(\mathbf{v} + \mathbf{v}') = p : wt(\mathbf{v}) = wt(\mathbf{v}') = p] =$$

$$= N^{2} \cdot \frac{\binom{k+\ell}{p} \cdot \binom{p}{(p/2)}\binom{k+\ell-p}{p/2}}{\binom{k+\ell}{p}^{2}} = \stackrel{!}{\geq} 2N \quad \Leftrightarrow \quad N \ge \frac{2\binom{k+\ell}{p}}{\binom{p}{(p/2)}\binom{k+\ell-p}{p/2}}$$

How large is $T_{\mathcal{N}\mathcal{N}}$?

Glimpse of the analysis How large is *N*?

• Want:
$$|\mathbf{w} \in L_i : \mathbf{w} \in \mathcal{C}_i| \ge N$$

• Each new parity-check equation eliminates half of the list elements:

$$\Pr[\mathbf{w} \in \mathcal{C}_i \mid \mathbf{w} \in L_i = \Pr[\mathbf{w} \in \mathcal{C}_i \mid \mathbf{w} \in \mathcal{C}_{i-1}] = \frac{|\mathcal{C}_i|}{|\mathcal{C}_{i-1}|} = 1/2$$

• We want to keep (asymptotically) the same list sizes:

$$\mathbb{E}\left[|\mathbf{w} \in L_i : \mathbf{w} \in \mathcal{C}_i|\right] = \mathbb{E}\left[|L_i|\right]/2 \stackrel{!}{\geq} |L_{i-1}| =: N$$

• $\mathbb{E}\left[|L_i|\right] = |L_{i-1}|^2 \cdot \Pr[wt(\mathbf{v} + \mathbf{v}') = p : wt(\mathbf{v}) = wt(\mathbf{v}') = p] =$

$$= N^2 \cdot \frac{\binom{k+\ell}{p} \cdot \binom{p}{(p/2)}\binom{k+\ell-p}{p/2}}{\binom{k+\ell}{p}^2} = \stackrel{!}{\geq} 2N \quad \Leftrightarrow \quad N \ge \frac{2\binom{k+\ell}{p}}{\binom{p}{(p/2)}\binom{k+\ell-p}{p/2}}$$

How large is $T_{\mathcal{N}\mathcal{N}}$?

Depends on the algorithm...

ISD with Sieving: asymptotics (worst-case rate, GV bound error)

•
$$wt(\mathbf{v}_1) = wt(\mathbf{v}_2) = wt(\mathbf{v}_1 + \mathbf{v}_2) = p \implies wt(\mathbf{v}_1 \wedge \mathbf{v}_2) = p/2$$

• Idea: Enumerate potential overlap for each vector

ISD with Sieving: asymptotics (worst-case rate, GV bound error)

- $wt(\mathbf{v}_1) = wt(\mathbf{v}_2) = wt(\mathbf{v}_1 + \mathbf{v}_2) = p \implies wt(\mathbf{v}_1 \wedge \mathbf{v}_2) = p/2$
- Idea: put another random code on top, decode all \mathbf{v}_i 's w.r.t. code. Close \mathbf{v}_i 's will decode to the same codeword(s).

ISD with Sieving: asymptotics (worst-case rate, GV bound error)

•
$$wt(\mathbf{v}_1) = wt(\mathbf{v}_2) = wt(\mathbf{v}_1 + \mathbf{v}_2) = p \implies wt(\mathbf{v}_1 \wedge \mathbf{v}_2) = p/2$$

• Idea: a Random Product Code (RPC) on top, decode all \mathbf{v}_i 's w.r.t. code. Close \mathbf{v}_i 's will decode to the same codeword(s). But now we can find *all* of them faster.

ISD with Sieving: asymptotics (worst-case rate, GV bound error)

•
$$wt(\mathbf{v}_1) = wt(\mathbf{v}_2) = wt(\mathbf{v}_1 + \mathbf{v}_2) = p \implies wt(\mathbf{v}_1 \wedge \mathbf{v}_2) = p/2$$

Idea: a Random Product Code (RPC) on top, decode all v_i's w.r.t. code.
 Close v_i's will decode to the same codeword(s). But now we can find all of them faster.

• Take-away: lattice sieving including NN technique translate to codes in Hamming metric

Conclusions

- Take-away: lattice sieving including NN technique translate to codes in Hamming metric
- Open research direction: *k*-sieve (time-memory trade-offs)
- Full version: https://eprint.iacr.org/2023/1577
- Slides:

https://crypto-kantiana.com/elena.kirshanova/talks/MWCC24.pdf

Conclusions

- Take-away: lattice sieving including NN technique translate to codes in Hamming metric
- Open research direction: *k*-sieve (time-memory trade-offs)
- Full version: https://eprint.iacr.org/2023/1577
- Slides:

https://crypto-kantiana.com/elena.kirshanova/talks/MWCC24.pdf

Q?

Part III

From codes to lattices: dense lattice construction

Lattice invariants

A lattice is a set $\Lambda = \{\sum_{i \leq n} x_i \mathbf{b}_i : x_i \in \mathbb{Z}\}$ for linearly independent $\mathbf{b}_i \in \mathbb{R}^n$. $\{\mathbf{b}_i\}_i$ is a basis of Λ

Our goal

$$\sqrt{\gamma(\Lambda)} = \lambda_1(\Lambda) / \det(\Lambda)^{\frac{1}{n}} \le \sqrt{n}$$

We are interested in

- 1. explicit construction of a lattice with as large $\gamma(\Lambda)$ as possible
- 2. with an efficient (list-) decoding algorithm (runtime at most poly(n)).

Our goal

$$\sqrt{\gamma(\Lambda)} = \lambda_1(\Lambda) / \det(\Lambda)^{\frac{1}{n}} \le \sqrt{n}$$

We are interested in

- 1. explicit construction of a lattice with as large $\gamma(\Lambda)$ as possible
- 2. with an efficient (list-) decoding algorithm (runtime at most poly(n)).

Why? We might want to use lattice as codes, hence we care about their decoding properties.

A 'random' lattice (an example will given later) is expected to achieve $\sqrt{\gamma(\Lambda)} \sim \sqrt{n}$, but we do not know how to efficiently decode them.

Lattice Λ	$\sqrt{\gamma(\Lambda)}$
Barnes-Wall lattice [BW]	$n^{1/4}$

Defined by the rows of $BW^{k} = \begin{bmatrix} 1 & 1 \\ 0 & \phi \end{bmatrix}^{\otimes k} \subset \mathbb{C}^{2^{k}},$ where $\phi = 1 + i$

Lattice Λ	$\sqrt{\gamma(\Lambda)}$
Barnes-Wall lattice [BW]	$n^{1/4}$
Discrete Logarithm Lattices [DP]	$\frac{\sqrt{n}}{\log n}$

For $(\mathbb{Z}/m\mathbb{Z})^{\star}$, p_i - primes, $1 \leq i \leq n$ $\phi : \mathbb{Z}^n \to (\mathbb{Z}/m\mathbb{Z})^{\star}$ $(x_1, \dots, x_n) \mapsto \prod_{i=1}^n p_i^{x_i}$ $\Lambda_{dlog} = \ker \phi$.

Lattice Λ	$\sqrt{\gamma(\Lambda)}$
Barnes-Wall lattice [BW]	$n^{1/4}$
Discrete Logarithm Lattices [DP]	$\frac{\sqrt{n}}{\log n}$
Construction-A lattice from Reed-Solomon codes [BP]	$\sqrt{\frac{n}{\log n}}$

Constriction-A: Take $B \in (\mathbb{Z}/q\mathbb{Z})^{n \times m}$ – a generator matrix of a code. $\Lambda_{A} = \mathbb{Z}^{n}B + q\mathbb{Z}^{m} \subset \mathbb{Z}^{m}$ is a construction-A lattice.

Lattice Λ	$\sqrt{\gamma(\Lambda)}$
Barnes-Wall lattice [BW]	$n^{1/4}$
Discrete Logarithm Lattices [DP]	$\frac{\sqrt{n}}{\log n}$
Construction-A lattice from Reed-Solomon codes [BP]	$\sqrt{\frac{n}{\log n}}$
Construction-D lattice from BCH codes [MP]	$\sqrt{\frac{n}{\log n}}$

Lifting sequences of codes to lattices

Lattice Λ	$\sqrt{\gamma(\Lambda)}$
Barnes-Wall lattice [BW]	$n^{1/4}$
Discrete Logarithm Lattices [DP]	$\frac{\sqrt{n}}{\log n}$
Construction-A lattice from Reed-Solomon codes [BP]	$\sqrt{\frac{n}{\log n}}$
Construction-D lattice from BCH codes [MP]	$\sqrt{\frac{n}{\log n}}$
Construction-D lattice from subfield subcodes of Garcia-Stichtenoth codes [KM]	$\frac{\sqrt{n}}{(\log n)^{\varepsilon + o(1)}}$

Kirshanova-Malygina'23. This talk

Theorem: For a constant $\varepsilon > 0$, there is a family of lattices $\mathcal{L} \subset \mathbb{R}^n$ with normalized minimum distance

$$rac{\lambda_1(\Lambda)}{\det(\Lambda)^{1/n}} = \Omega\left(rac{\sqrt{n}}{(\log n)^{arepsilon+o(1)}}
ight).$$

These lattices are list decodable to within distance $\sqrt{1/2} \cdot \lambda_1(\Lambda)$ in $\operatorname{poly}(n)$ time.

Construction-D lattice: simplified definition

• Fix an integer $L \ge 0$, let

$$C_L \subseteq C_{L-1} \subseteq \ldots \subseteq C_1 \subseteq C_0 = \mathbb{F}_p^n$$

be a tower of *p*-ary codes of length *n*, where $\dim(C_i) = k_i$.

Construction-D lattice: simplified definition

• Fix an integer $L \ge 0$, let

 $\overline{C_L \subseteq C_{L-1} \subseteq \dots} \subseteq C_1 \subseteq C_0 = \mathbb{F}_p^n$

be a tower of p-ary codes of length n, where $\dim(C_i) = k_i$.

• Let $\mathbf{b}_1, \ldots, \mathbf{b}_n$ be a basis of \mathbb{F}_p^n s.t.

 $\mathbf{b}_1, \ldots, \mathbf{b}_{k_i}$ is a basis of C_i for all $i = 0, \ldots, L$.

• Define a set of distinguished \mathbb{Z}^n representatives of $\mathbf{c}_i = \sum_{j=1}^{k_i} a_j \mathbf{b}_j \in C_i$ as

$$\overline{\mathbf{c}}_i = \sum_{j=1}^{k_i} \overline{a}_j \overline{\mathbf{b}}_j \in \mathbb{Z}^n \quad \text{where } \overline{a}_j \in \{0, \dots p-1\} \subset \mathbb{Z}.$$

Construction-D lattice: simplified definition

• Fix an integer $L \ge 0$, let

 $C_L \subseteq C_{L-1} \subseteq \ldots \subseteq C_1 \subseteq C_0 = \mathbb{F}_p^n$

be a tower of p-ary codes of length n, where $\dim(C_i) = k_i$.

• Let $\mathbf{b}_1, \ldots, \mathbf{b}_n$ be a basis of \mathbb{F}_p^n s.t.

 $\mathbf{b}_1, \ldots, \mathbf{b}_{k_i}$ is a basis of C_i for all $i = 0, \ldots, L$.

• Define a set of distinguished \mathbb{Z}^n representatives of $\mathbf{c}_i = \sum_{j=1}^{k_i} a_j \mathbf{b}_j \in C_i$ as

$$\overline{\mathbf{c}}_i = \sum_{j=1}^{k_i} \overline{a}_j \overline{\mathbf{b}}_j \in \mathbb{Z}^n \quad \text{where } \overline{a}_j \in \{0, \dots p-1\} \subset \mathbb{Z}$$

• Let $\mathcal{L}_0 = \mathbb{Z}^n$, and for each $i = 1, \dots, L$ define

$$\Lambda_i = \overline{C}_i + p\Lambda_{i-1}, \quad \overline{C}_i = \{\overline{c}_i : c_i \in C_i\}.$$

• The construction-D for the tower $\{C_i\}$ is $\Lambda = \Lambda_L$.

Main idea

- Construct a sequence of codes C_L ⊆ C_{L-1} ⊆ ... ⊆ C₁ ⊆ C₀ = ℝⁿ_q, each C_i is an algebraic-geometric code from a specific function field, the Garcia-Stichtenoth field.
- Such AG-codes are defined over \mathbb{F}_{p^h} for an even h, hence go to subfield-subcodes:

$$C_L \cap \mathbb{F}_p^n \subseteq C_{L-1} \cap \mathbb{F}_p^n \subseteq \dots C_0 \cap \mathbb{F}_p^n = \mathbb{F}_p^n,$$

- We know $\dim(C_i \cap \mathbb{F}_p^n)$ and minimal distance of $C_i \cap \mathbb{F}_p^n$ for all *i*.
- Compute the minimum $\lambda_1(\Lambda_L)$ of the construction-D lattice Λ_L .
- Compute (an upper bound on) $det(\Lambda_L)$.
- Conclude on $\gamma(\Lambda) = \lambda_1(\Lambda) / \det(\Lambda_L)$.
- For efficient decoding, adapt soft decision decoding algorithm of Koetter-Vardy.

Conclusions

- Take you favourite code (may be an AG code) with a poly-time decoding algorithm.
- Construct a sequence of codes with a lower bound on min. distance and on dimension.
- These suffice to derive $\lambda_1(\Lambda)$ and (a lower bound) on $det(\Lambda)$.
- Check if you beat the state-of-the-art.
- Interesting candidate: Bassa-Ritzenthaler towers, (arXiv:1807.05714)