
Lattices&Codes: Algorithmic Connections and New Constructions

Elena Kirshanova

Technology Innovation Institute, Abu Dhabi, UAE

MWCC 2024

Agenda

Part I. Intro: Lattices&Codes

Part II. Sieving for codes

Part III (if time). Lattice constructions from codes

Part I

Intro: Lattices&Codes

Lattices&Codes: definitions
L C

Lattice L – additive group in Rn Code C – additive group in Fn
p

Euclidean metric (`2) `1 - metric

‖v‖2 wt(v) = |{i : v[i] > 0}|- Hamming weight

λ1(L) - shortest vector d(C)-min. distance

Minkowski bound on λ1(L) Gilbert-Varshamov bound

0

b1

b2

c

1111

1010 0101

0000

Lattices&Codes: definitions
L C

Lattice L – additive group in Rn Code C – additive group in Fn
p

Euclidean metric (`2) `1 - metric

‖v‖2 wt(v) = |{i : v[i] > 0}|- Hamming weight

λ1(L) - shortest vector d(C)-min. distance

Minkowski bound on λ1(L) Gilbert-Varshamov bound

0

b1

b2

c

1111

1010 0101

0000

Lattices&Codes: hard problems

L C
Finding a short vector

Given A ∈ Z(n−k)×n
q , find x ∈ Zn

q Given H ∈ F(n−k)×n
p , s ∈ Fn−k

p , find e ∈ Fn
p

s.t. ‖x‖ < B and Ax = 0 mod q s.t. wt(e) = ω and He = s

A
x

= 0 mod q

L⊥(A) = {x ∈ Zm : Ax = 0 mod q}
aka the SIS problem

H =

e

s

s

e

-1

0

Lattices&Codes: hard problems

L C
Finding a short vector

Given A ∈ Z(n−k)×n
q , find x ∈ Zn

q Given H ∈ F(n−k)×n
p , s ∈ Fn−k

p , find e ∈ Fn
p

s.t. ‖x‖ < B and Ax = 0 mod q s.t. wt(e) = ω and He = s

A
x

= 0 mod q

L⊥(A) = {x ∈ Zm : Ax = 0 mod q}
aka the SIS problem

H =

e

s

s

e

-1

0

Lattices&Codes: algorithms

L C

Algorithms for finding a short vector:

Enumeration algorithms ISD algorithms

Sieving for lattice vectors Sieving for codes1

1Guo, Q., Johansson, T., Nguyen, V.: A new sieving-style information-set decoding algorithm.
Ducas L, Esser A., Etinksi S., Kirshanova E.: Asymptotics and omprovements of sieving for codes

Part II

Sieving for codes

Idea of sieving in lattices

Saturate space with enough lattice vectors so that their sums give short(er) vectors

L L=

L′
x1 ± x2

||x1 ± x2||
is small

L′=

...
poly(n)

0

Questions to be addressed: size of L (memory), time to find all close pairs
(complexity). Best known algorithm for the short vector problem.

Idea of sieving in lattices

Saturate space with enough lattice vectors so that their sums give short(er) vectors

L L=

L′
x1 ± x2

||x1 ± x2||
is small

L′=

...
poly(n)

0

Questions to be addressed: size of L (memory), time to find all close pairs
(complexity). Best known algorithm for the short vector problem.

Idea of sieving in lattices

Saturate space with enough lattice vectors so that their sums give short(er) vectors

L L=

L′
x1 ± x2

||x1 ± x2||
is small

L′=

...
poly(n)

0

Questions to be addressed: size of L (memory), time to find all close pairs
(complexity). Best known algorithm for the short vector problem.

Idea of sieving in lattices

Saturate space with enough lattice vectors so that their sums give short(er) vectors

L L=

L′
x1 ± x2

||x1 ± x2||
is small

L′=

...
poly(n)

0

Questions to be addressed: size of L (memory), time to find all close pairs
(complexity). Best known algorithm for the short vector problem.

Idea of sieving in lattices

Saturate space with enough lattice vectors so that their sums give short(er) vectors

L L=

L′
x1 ± x2

||x1 ± x2||
is small

L′=

...
poly(n)

0

Questions to be addressed: size of L (memory), time to find all close pairs
(complexity). Best known algorithm for the short vector problem.

Idea of sieving in lattices

Saturate space with enough lattice vectors so that their sums give short(er) vectors

L L=

L′
x1 ± x2

||x1 ± x2||
is small

L′=

...
poly(n)

0

Questions to be addressed: size of L (memory), time to find all close pairs
(complexity). Best known algorithm for the short vector problem.

Idea of sieving in binary codes

Keep weight constant, move gradually from subcodes Ci := {e : (He)[0 : i] = 0} to
the code C: C1 ⊂ C2 . . . ⊂ C. Choose some weight p ≤ ω.

L L

e1
e2

= wt(ei) = p
(Hei)[0] = 0

L′
e1 + e2 = e′

wt(e′) = p,
(He′)[1] = 0

e′

L′=

...
n

H =

0

e

wt(e) = p

0

e′

wt(e′) = p

0

0

0

0

0

Idea of sieving in binary codes

Keep weight constant, move gradually from subcodes Ci := {e : (He)[0 : i] = 0} to
the code C: C1 ⊂ C2 . . . ⊂ C. Choose some weight p ≤ ω.

L L

e1
e2

=

wt(ei) = p
(Hei)[0] = 0

L′
e1 + e2 = e′

wt(e′) = p,
(He′)[1] = 0

e′

L′=

...
n

H =

0

e

wt(e) = p

0

e′

wt(e′) = p

0

0

0

0

0

Idea of sieving in binary codes

Keep weight constant, move gradually from subcodes Ci := {e : (He)[0 : i] = 0} to
the code C: C1 ⊂ C2 . . . ⊂ C. Choose some weight p ≤ ω.

L L

e1
e2

=

wt(ei) = p
(Hei)[0] = 0

L′

e1 + e2 = e′

wt(e′) = p,
(He′)[1] = 0

e′

L′=

...
n

H =

0

e

wt(e) = p

0

e′

wt(e′) = p

0

0

0

0

0

Idea of sieving in binary codes

Keep weight constant, move gradually from subcodes Ci := {e : (He)[0 : i] = 0} to
the code C: C1 ⊂ C2 . . . ⊂ C. Choose some weight p ≤ ω.

L L

e1
e2

=

wt(ei) = p
(Hei)[0] = 0

L′

e1 + e2 = e′

wt(e′) = p,
(He′)[1] = 0

e′

L′=

...
n

H =

0

e

wt(e) = p

0

e′

wt(e′) = p

0

0

0

0

0

Setting up ISD with Sieving: systematic form

= 0

e

Hn− k

n

e1

e2

H1 H2

n− k k

e1

e2

In−k H ′

n− k k

e1

e2

In−k−`

0

H ′

H ′′

n− k − ` k + `

e1

e2

In−k−`

0

H ′

H ′′

n− k − ` k + `

=⇒
H ′e2 + e1 = 0

H ′′e2 = 0

e1

e2

In−k−`

0

H ′

H ′′

n− k − ` k + `

=⇒
H ′e2 + e1 = 0

H ′′e2 = 0

Sieve for e2

wt(e2) = p,wt(e1) = ω − p

Apply permutations on H until achieve the correct weight distribution on e1, e2.

Setting up ISD with Sieving: systematic form

= 0

e

Hn− k

n

e1

e2

H1 H2

n− k k

e1

e2

In−k H ′

n− k k

e1

e2

In−k−`

0

H ′

H ′′

n− k − ` k + `

e1

e2

In−k−`

0

H ′

H ′′

n− k − ` k + `

=⇒
H ′e2 + e1 = 0

H ′′e2 = 0

e1

e2

In−k−`

0

H ′

H ′′

n− k − ` k + `

=⇒
H ′e2 + e1 = 0

H ′′e2 = 0

Sieve for e2

wt(e2) = p,wt(e1) = ω − p

Apply permutations on H until achieve the correct weight distribution on e1, e2.

Setting up ISD with Sieving: systematic form

= 0

e

Hn− k

n

e1

e2

H1 H2

n− k k

e1

e2

In−k H ′

n− k k

e1

e2

In−k−`

0

H ′

H ′′

n− k − ` k + `

e1

e2

In−k−`

0

H ′

H ′′

n− k − ` k + `

=⇒
H ′e2 + e1 = 0

H ′′e2 = 0

e1

e2

In−k−`

0

H ′

H ′′

n− k − ` k + `

=⇒
H ′e2 + e1 = 0

H ′′e2 = 0

Sieve for e2

wt(e2) = p,wt(e1) = ω − p

Apply permutations on H until achieve the correct weight distribution on e1, e2.

Setting up ISD with Sieving: systematic form

= 0

e

Hn− k

n

e1

e2

H1 H2

n− k k

e1

e2

In−k H ′

n− k k

e1

e2

In−k−`

0

H ′

H ′′

n− k − ` k + `

e1

e2

In−k−`

0

H ′

H ′′

n− k − ` k + `

=⇒
H ′e2 + e1 = 0

H ′′e2 = 0

e1

e2

In−k−`

0

H ′

H ′′

n− k − ` k + `

=⇒
H ′e2 + e1 = 0

H ′′e2 = 0

Sieve for e2

wt(e2) = p,wt(e1) = ω − p

Apply permutations on H until achieve the correct weight distribution on e1, e2.

Setting up ISD with Sieving: systematic form

= 0

e

Hn− k

n

e1

e2

H1 H2

n− k k

e1

e2

In−k H ′

n− k k

e1

e2

In−k−`

0

H ′

H ′′

n− k − ` k + `

e1

e2

In−k−`

0

H ′

H ′′

n− k − ` k + `

=⇒
H ′e2 + e1 = 0

H ′′e2 = 0

e1

e2

In−k−`

0

H ′

H ′′

n− k − ` k + `

=⇒
H ′e2 + e1 = 0

H ′′e2 = 0

Sieve for e2

wt(e2) = p,wt(e1) = ω − p

Apply permutations on H until achieve the correct weight distribution on e1, e2.

Setting up ISD with Sieving: systematic form

= 0

e

Hn− k

n

e1

e2

H1 H2

n− k k

e1

e2

In−k H ′

n− k k

e1

e2

In−k−`

0

H ′

H ′′

n− k − ` k + `

e1

e2

In−k−`

0

H ′

H ′′

n− k − ` k + `

=⇒
H ′e2 + e1 = 0

H ′′e2 = 0

e1

e2

In−k−`

0

H ′

H ′′

n− k − ` k + `

=⇒
H ′e2 + e1 = 0

H ′′e2 = 0

Sieve for e2

wt(e2) = p,wt(e1) = ω − p

Apply permutations on H until achieve the correct weight distribution on e1, e2.

Setting up ISD with Sieving: systematic form

= 0

e

Hn− k

n

e1

e2

H1 H2

n− k k

e1

e2

In−k H ′

n− k k

e1

e2

In−k−`

0

H ′

H ′′

n− k − ` k + `

e1

e2

In−k−`

0

H ′

H ′′

n− k − ` k + `

=⇒
H ′e2 + e1 = 0

H ′′e2 = 0

e1

e2

In−k−`

0

H ′

H ′′

n− k − ` k + `

=⇒
H ′e2 + e1 = 0

H ′′e2 = 0

Sieve for e2

wt(e2) = p,wt(e1) = ω − p

Apply permutations on H until achieve the correct weight distribution on e1, e2.

Sieving for codes: the algorithm

1. Randomly permute H and compute H ′′.

2. Construct L0, |L0| = N with vectors v s.t.
wt(v) = p and (H ′′v)[0] = 0.

3. For i = 1, . . . , n :

3.1 Find all pairs v,v ∈ Li−1 with
wt(v + v′) = p, store them in Li

3.2 Discard all v ∈ Li s.t. v /∈ Ci

4. Check all v ∈ Ln for v ?
= e′′

Runtime

Success Probability:
Pr[wt(e′′) = p]

(n−k−`w−p)(k+`
p)

(nw)

·Pr[e′′ ∈ Ln]

N

(k+`
p)/2`

Time per iteration (Steps 1–4)

n · TNN
TNN − runtime of Near Neighbor
search (Step 3.1)

Sieving for codes: the algorithm

1. Randomly permute H and compute H ′′.

2. Construct L0, |L0| = N with vectors v s.t.
wt(v) = p and (H ′′v)[0] = 0.

3. For i = 1, . . . , n :

3.1 Find all pairs v,v ∈ Li−1 with
wt(v + v′) = p, store them in Li

3.2 Discard all v ∈ Li s.t. v /∈ Ci

4. Check all v ∈ Ln for v ?
= e′′

Runtime

Success Probability:
Pr[wt(e′′) = p]

(n−k−`w−p)(k+`
p)

(nw)

·Pr[e′′ ∈ Ln]

N

(k+`
p)/2`

Time per iteration (Steps 1–4)

n · TNN
TNN − runtime of Near Neighbor
search (Step 3.1)

Sieving for codes: the algorithm

1. Randomly permute H and compute H ′′.

2. Construct L0, |L0| = N with vectors v s.t.
wt(v) = p and (H ′′v)[0] = 0.

3. For i = 1, . . . , n :

3.1 Find all pairs v,v ∈ Li−1 with
wt(v + v′) = p, store them in Li

3.2 Discard all v ∈ Li s.t. v /∈ Ci

4. Check all v ∈ Ln for v ?
= e′′

Runtime

Success Probability:
Pr[wt(e′′) = p]

(n−k−`w−p)(k+`
p)

(nw)

·Pr[e′′ ∈ Ln]

N

(k+`
p)/2`

Time per iteration (Steps 1–4)

n · TNN
TNN − runtime of Near Neighbor
search (Step 3.1)

Sieving for codes: the algorithm

1. Randomly permute H and compute H ′′.

2. Construct L0, |L0| = N with vectors v s.t.
wt(v) = p and (H ′′v)[0] = 0.

3. For i = 1, . . . , n :

3.1 Find all pairs v,v ∈ Li−1 with
wt(v + v′) = p, store them in Li

3.2 Discard all v ∈ Li s.t. v /∈ Ci

4. Check all v ∈ Ln for v ?
= e′′

Runtime

Success Probability:
Pr[wt(e′′) = p]

(n−k−`w−p)(k+`
p)

(nw)

·Pr[e′′ ∈ Ln]

N

(k+`
p)/2`

Time per iteration (Steps 1–4)

n · TNN
TNN − runtime of Near Neighbor
search (Step 3.1)

Sieving for codes: the algorithm

1. Randomly permute H and compute H ′′.

2. Construct L0, |L0| = N with vectors v s.t.
wt(v) = p and (H ′′v)[0] = 0.

3. For i = 1, . . . , n :

3.1 Find all pairs v,v ∈ Li−1 with
wt(v + v′) = p, store them in Li

3.2 Discard all v ∈ Li s.t. v /∈ Ci

4. Check all v ∈ Ln for v ?
= e′′

Runtime

Success Probability:
Pr[wt(e′′) = p]

(n−k−`w−p)(k+`
p)

(nw)

·Pr[e′′ ∈ Ln]

N

(k+`
p)/2`

Time per iteration (Steps 1–4)

n · TNN
TNN − runtime of Near Neighbor
search (Step 3.1)

Glimpse of the analysis
How large is N?

• Want: |w ∈ Li : w ∈ Ci| ≥ N
• Each new parity-check equation eliminates half of the list elements:

Pr[w ∈ Ci | w ∈ Li = Pr[w ∈ Ci | w ∈ Ci−1] =
|Ci|
|Ci−1|

= 1/2

• We want to keep (asymptotically) the same list sizes:

E
[
|w ∈ Li : w ∈ Ci|

]
= E

[
|Li|
]
/2

!

≥ |Li−1| =: N

• E
[
|Li|
]

= |Li−1|2 · Pr[wt(v + v′) = p : wt(v) = wt(v′) = p] =

= N2 ·

(
k+`
p

)
·
(

p
p/2

)(
k+`−p
p/2

)(
k+`
p

)2 =
!

≥ 2N ⇔ N ≥
2
(
k+`
p

)(
p

p/2

)(
k+`−p
p/2

)

How large is TNN?

Depends on the algorithm...

Glimpse of the analysis
How large is N?

• Want: |w ∈ Li : w ∈ Ci| ≥ N
• Each new parity-check equation eliminates half of the list elements:

Pr[w ∈ Ci | w ∈ Li = Pr[w ∈ Ci | w ∈ Ci−1] =
|Ci|
|Ci−1|

= 1/2

• We want to keep (asymptotically) the same list sizes:

E
[
|w ∈ Li : w ∈ Ci|

]
= E

[
|Li|
]
/2

!

≥ |Li−1| =: N

• E
[
|Li|
]

= |Li−1|2 · Pr[wt(v + v′) = p : wt(v) = wt(v′) = p] =

= N2 ·

(
k+`
p

)
·
(

p
p/2

)(
k+`−p
p/2

)(
k+`
p

)2 =
!

≥ 2N ⇔ N ≥
2
(
k+`
p

)(
p

p/2

)(
k+`−p
p/2

)
How large is TNN?

Depends on the algorithm...

Glimpse of the analysis
How large is N?

• Want: |w ∈ Li : w ∈ Ci| ≥ N
• Each new parity-check equation eliminates half of the list elements:

Pr[w ∈ Ci | w ∈ Li = Pr[w ∈ Ci | w ∈ Ci−1] =
|Ci|
|Ci−1|

= 1/2

• We want to keep (asymptotically) the same list sizes:

E
[
|w ∈ Li : w ∈ Ci|

]
= E

[
|Li|
]
/2

!

≥ |Li−1| =: N

• E
[
|Li|
]

= |Li−1|2 · Pr[wt(v + v′) = p : wt(v) = wt(v′) = p] =

= N2 ·

(
k+`
p

)
·
(

p
p/2

)(
k+`−p
p/2

)(
k+`
p

)2 =
!

≥ 2N ⇔ N ≥
2
(
k+`
p

)(
p

p/2

)(
k+`−p
p/2

)
How large is TNN?

Depends on the algorithm...

ISD with Sieving: asymptotics (worst-case rate, GV bound error)

0.117

GJN

0.117

GJN

0.1007

Sieving with Code

0.1001

Sieving with RPC

0.096

Both-May

0.102

BJMM

0.121

Prange

0.112

MMT

• wt(v1) = wt(v2) = wt(v1 + v2) = p ⇒ wt(v1 ∧ v2) = p/2

• Idea: Enumerate potential overlap for each vector

ISD with Sieving: asymptotics (worst-case rate, GV bound error)

0.117

GJN

0.117

GJN

0.1007

Sieving with Code

0.1001

Sieving with RPC

0.096

Both-May

0.102

BJMM

0.121

Prange

0.112

MMT

• wt(v1) = wt(v2) = wt(v1 + v2) = p ⇒ wt(v1 ∧ v2) = p/2

• Idea: put another random code on top, decode all vi’s w.r.t. code. Close
vi’s will decode to the same codeword(s).

ISD with Sieving: asymptotics (worst-case rate, GV bound error)

0.117

GJN

0.117

GJN

0.1007

Sieving with Code

0.1001

Sieving with RPC

0.096

Both-May

0.102

BJMM

0.121

Prange

0.112

MMT

• wt(v1) = wt(v2) = wt(v1 + v2) = p ⇒ wt(v1 ∧ v2) = p/2

• Idea: a Random Product Code (RPC) on top, decode all vi’s w.r.t. code.
Close vi’s will decode to the same codeword(s). But now we can find all
of them faster.

ISD with Sieving: asymptotics (worst-case rate, GV bound error)

0.117

GJN

0.117

GJN

0.1007

Sieving with Code

0.1001

Sieving with RPC

0.096

Both-May

0.102

BJMM

0.121

Prange

0.112

MMT

• wt(v1) = wt(v2) = wt(v1 + v2) = p ⇒ wt(v1 ∧ v2) = p/2

• Idea: a Random Product Code (RPC) on top, decode all vi’s w.r.t. code.
Close vi’s will decode to the same codeword(s). But now we can find all
of them faster.

Conclusions

• Take-away: lattice sieving including NN technique translate to codes in
Hamming metric

• Open research direction: k-sieve (time-memory trade-offs)

• Full version: https://eprint.iacr.org/2023/1577

• Slides:
https://crypto-kantiana.com/elena.kirshanova/talks/MWCC24.pdf

Q?

https://eprint.iacr.org/2023/1577
https://crypto-kantiana.com/elena.kirshanova/talks/MWCC24.pdf

Conclusions

• Take-away: lattice sieving including NN technique translate to codes in
Hamming metric

• Open research direction: k-sieve (time-memory trade-offs)

• Full version: https://eprint.iacr.org/2023/1577

• Slides:
https://crypto-kantiana.com/elena.kirshanova/talks/MWCC24.pdf

Q?

https://eprint.iacr.org/2023/1577
https://crypto-kantiana.com/elena.kirshanova/talks/MWCC24.pdf

Conclusions

• Take-away: lattice sieving including NN technique translate to codes in
Hamming metric

• Open research direction: k-sieve (time-memory trade-offs)

• Full version: https://eprint.iacr.org/2023/1577

• Slides:
https://crypto-kantiana.com/elena.kirshanova/talks/MWCC24.pdf

Q?

https://eprint.iacr.org/2023/1577
https://crypto-kantiana.com/elena.kirshanova/talks/MWCC24.pdf

Part III

From codes to lattices: dense lattice construction

Lattice invariants

0

b1

b2

c

Minimum

λ1(Λ) = minv∈Λ\0 ‖v‖2

Determinant

det(Λ) = |det(bi)i|
Minkowski bound

λ1(Λ) ≤
√
n · det(Λ)

1
n

Normalized min. distance√
γ(Λ) = λ1(Λ)/ det(Λ)

1
n

A lattice is a set Λ = {
∑

i≤n xibi : xi ∈ Z} for linearly independent bi ∈ Rn.
{bi}i is a basis of Λ

Our goal

√
γ(Λ) = λ1(Λ)/ det(Λ)

1
n ≤
√
n

We are interested in

1. explicit construction of a lattice with as large γ(Λ) as possible
2. with an efficient (list-) decoding algorithm (runtime at most poly(n)).

Why? We might want to use lattice as codes, hence we care about their
decoding properties.

A ‘random’ lattice (an example will given later) is expected to achieve√
γ(Λ) ∼

√
n, but we do not know how to efficiently decode them.

Our goal

√
γ(Λ) = λ1(Λ)/ det(Λ)

1
n ≤
√
n

We are interested in

1. explicit construction of a lattice with as large γ(Λ) as possible
2. with an efficient (list-) decoding algorithm (runtime at most poly(n)).

Why? We might want to use lattice as codes, hence we care about their
decoding properties.

A ‘random’ lattice (an example will given later) is expected to achieve√
γ(Λ) ∼

√
n, but we do not know how to efficiently decode them.

State-of-the art on
√
γ(Λ) (Ω() for

√
γ(Λ) is omitted)

Defined by the rows of

BWk =

[
1 1

0 φ

]⊗k
⊂ C2k,

where φ = 1 + i

For (Z/mZ)?,

pi – primes, 1 ≤ i ≤ n

φ : Zn → (Z/mZ)?

(x1, . . . , xn) 7→
∏n

i=1 p
xi
i

Λdlog = kerφ.

Lifting sequences of
codes to lattices

Constriction-A:
Take B ∈ (Z/qZ)n×m –

a generator matrix of a code.

ΛA = ZnB + qZm ⊂ Zm

is a construction-A lattice.

Kirshanova-Malygina’23.
This talk

Lattice Λ
√
γ(Λ)

Barnes-Wall lattice [BW] n1/4

Barnes-Wall lattice [BW] n1/4

Discrete Logarithm Lattices [DP]

√
n

log n

Construction-A lattice
√

n
log nfrom Reed-Solomon codes [BP]

Construction-D lattice
√

n
log nfrom BCH codes [MP]

State-of-the art on
√
γ(Λ) (Ω() for

√
γ(Λ) is omitted)

Defined by the rows of

BWk =

[
1 1

0 φ

]⊗k
⊂ C2k,

where φ = 1 + i

For (Z/mZ)?,

pi – primes, 1 ≤ i ≤ n

φ : Zn → (Z/mZ)?

(x1, . . . , xn) 7→
∏n

i=1 p
xi
i

Λdlog = kerφ.

Lifting sequences of
codes to lattices

Constriction-A:
Take B ∈ (Z/qZ)n×m –

a generator matrix of a code.

ΛA = ZnB + qZm ⊂ Zm

is a construction-A lattice.

Kirshanova-Malygina’23.
This talk

Lattice Λ
√
γ(Λ)

Barnes-Wall lattice [BW] n1/4

Discrete Logarithm Lattices [DP]

√
n

log n

Discrete Logarithm Lattices [DP]

√
n

log n

Construction-A lattice
√

n
log nfrom Reed-Solomon codes [BP]

Construction-D lattice
√

n
log nfrom BCH codes [MP]

State-of-the art on
√
γ(Λ) (Ω() for

√
γ(Λ) is omitted)

Defined by the rows of

BWk =

[
1 1

0 φ

]⊗k
⊂ C2k,

where φ = 1 + i

For (Z/mZ)?,

pi – primes, 1 ≤ i ≤ n

φ : Zn → (Z/mZ)?

(x1, . . . , xn) 7→
∏n

i=1 p
xi
i

Λdlog = kerφ.

Lifting sequences of
codes to lattices

Constriction-A:
Take B ∈ (Z/qZ)n×m –

a generator matrix of a code.

ΛA = ZnB + qZm ⊂ Zm

is a construction-A lattice.

Kirshanova-Malygina’23.
This talk

Lattice Λ
√
γ(Λ)

Barnes-Wall lattice [BW] n1/4

Discrete Logarithm Lattices [DP]

√
n

log n

Construction-A lattice
√

n
log nfrom Reed-Solomon codes [BP]

Construction-A lattice
√

n
log nfrom Reed-Solomon codes [BP]

Construction-D lattice
√

n
log nfrom BCH codes [MP]

State-of-the art on
√
γ(Λ) (Ω() for

√
γ(Λ) is omitted)

Defined by the rows of

BWk =

[
1 1

0 φ

]⊗k
⊂ C2k,

where φ = 1 + i

For (Z/mZ)?,

pi – primes, 1 ≤ i ≤ n

φ : Zn → (Z/mZ)?

(x1, . . . , xn) 7→
∏n

i=1 p
xi
i

Λdlog = kerφ.

Lifting sequences of
codes to lattices

Constriction-A:
Take B ∈ (Z/qZ)n×m –

a generator matrix of a code.

ΛA = ZnB + qZm ⊂ Zm

is a construction-A lattice.

Kirshanova-Malygina’23.
This talk

Lattice Λ
√
γ(Λ)

Barnes-Wall lattice [BW] n1/4

Discrete Logarithm Lattices [DP]

√
n

log n

Construction-A lattice
√

n
log nfrom Reed-Solomon codes [BP]

Construction-D lattice
√

n
log nfrom BCH codes [MP]

Construction-D lattice
√

n
log nfrom BCH codes [MP]

State-of-the art on
√
γ(Λ) (Ω() for

√
γ(Λ) is omitted)

Defined by the rows of

BWk =

[
1 1

0 φ

]⊗k
⊂ C2k,

where φ = 1 + i

For (Z/mZ)?,

pi – primes, 1 ≤ i ≤ n

φ : Zn → (Z/mZ)?

(x1, . . . , xn) 7→
∏n

i=1 p
xi
i

Λdlog = kerφ.

Lifting sequences of
codes to lattices

Constriction-A:
Take B ∈ (Z/qZ)n×m –

a generator matrix of a code.

ΛA = ZnB + qZm ⊂ Zm

is a construction-A lattice.

Kirshanova-Malygina’23.
This talk

Lattice Λ
√
γ(Λ)

Barnes-Wall lattice [BW] n1/4

Discrete Logarithm Lattices [DP]

√
n

log n

Construction-A lattice
√

n
log nfrom Reed-Solomon codes [BP]

Construction-D lattice
√

n
log nfrom BCH codes [MP]

Construction-D lattice from √
n

(log n)ε+o(1)
subfield subcodes of

Garcia-Stichtenoth codes [KM]

Main result

Theorem: For a constant ε > 0, there is a family of lattices
L ⊂ Rn with normalized minimum distance

λ1(Λ)

det(Λ)1/n
= Ω

(√
n

(log n)ε+o(1)

)
.

These lattices are list decodable to within distance
√

1/2 · λ1(Λ)
in poly(n) time.

Construction-D lattice: simplified definition
• Fix an integer L ≥ 0, let

CL ⊆ CL−1 ⊆ . . . ⊆ C1 ⊆ C0 = Fn
p

be a tower of p-ary codes of length n, where dim(Ci) = ki.

• Let b1, . . . ,bn be a basis of Fn
p s.t.

b1, . . . ,bki is a basis of Ci for all i = 0, . . . , L.

• Define a set of distinguished Zn representatives of ci =
∑ki

j=1 ajbj ∈ Ci as

ci =

ki∑
j=1

ajbj ∈ Zn where aj ∈ {0, . . . p− 1} ⊂ Z.

• Let L0 = Zn, and for each i = 1, . . . , L define

Λi = Ci + pΛi−1, Ci = {ci : ci ∈ Ci}.
• The construction-D for the tower {Ci} is Λ = ΛL.

Construction-D lattice: simplified definition
• Fix an integer L ≥ 0, let

CL ⊆ CL−1 ⊆ . . . ⊆ C1 ⊆ C0 = Fn
p

be a tower of p-ary codes of length n, where dim(Ci) = ki.
• Let b1, . . . ,bn be a basis of Fn

p s.t.

b1, . . . ,bki is a basis of Ci for all i = 0, . . . , L.

• Define a set of distinguished Zn representatives of ci =
∑ki

j=1 ajbj ∈ Ci as

ci =

ki∑
j=1

ajbj ∈ Zn where aj ∈ {0, . . . p− 1} ⊂ Z.

• Let L0 = Zn, and for each i = 1, . . . , L define

Λi = Ci + pΛi−1, Ci = {ci : ci ∈ Ci}.
• The construction-D for the tower {Ci} is Λ = ΛL.

Construction-D lattice: simplified definition
• Fix an integer L ≥ 0, let

CL ⊆ CL−1 ⊆ . . . ⊆ C1 ⊆ C0 = Fn
p

be a tower of p-ary codes of length n, where dim(Ci) = ki.
• Let b1, . . . ,bn be a basis of Fn

p s.t.

b1, . . . ,bki is a basis of Ci for all i = 0, . . . , L.

• Define a set of distinguished Zn representatives of ci =
∑ki

j=1 ajbj ∈ Ci as

ci =

ki∑
j=1

ajbj ∈ Zn where aj ∈ {0, . . . p− 1} ⊂ Z.

• Let L0 = Zn, and for each i = 1, . . . , L define

Λi = Ci + pΛi−1, Ci = {ci : ci ∈ Ci}.
• The construction-D for the tower {Ci} is Λ = ΛL.

Main idea

• Construct a sequence of codes CL ⊆ CL−1 ⊆ . . . ⊆ C1 ⊆ C0 = Fn
q , each Ci

is an algebraic-geometric code from a specific function field, the
Garcia-Stichtenoth field.

• Such AG-codes are defined over Fph for an even h, hence go to
subfield-subcodes:

CL ∩ Fn
p ⊆ CL−1 ∩ Fn

p ⊆ . . . C0 ∩ Fn
p = Fn

p ,

• We know dim(Ci ∩ Fn
p) and minimal distance of Ci ∩ Fn

p for all i.

• Compute the minimum λ1(ΛL) of the construction-D lattice ΛL.

• Compute (an upper bound on) det(ΛL).

• Conclude on γ(Λ) = λ1(Λ)/ det(ΛL).

• For efficient decoding, adapt soft decision decoding algorithm of
Koetter-Vardy.

Conclusions

• Take you favourite code (may be an AG code) with a poly-time decoding
algorithm.

• Construct a sequence of codes with a lower bound on min. distance and
on dimension.

• These suffice to derive λ1(Λ) and (a lower bound) on det(Λ).

• Check if you beat the state-of-the-art.

• Interesting candidate: Bassa-Ritzenthaler towers, (arXiv:1807.05714)

