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Part I

Intro: Lattices&Codes



Lattices&Codes: definitions
L C

Lattice L – additive group in Rn Code C – additive group in Fn
p

Euclidean metric (`2) `1 - metric

‖v‖2 wt(v) = |{i : v[i] > 0}|- Hamming weight

λ1(L) - shortest vector d(C)-min. distance

Minkowski bound on λ1(L) Gilbert-Varshamov bound
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Lattices&Codes: hard problems

L C
Finding a short vector

Given A ∈ Z(n−k)×n
q , find x ∈ Zn

q Given H ∈ F(n−k)×n
p , s ∈ Fn−k

p , find e ∈ Fn
p

s.t. ‖x‖ < B and Ax = 0 mod q s.t. wt(e) = ω and He = s

A
x

= 0 mod q

L⊥(A) = {x ∈ Zm : Ax = 0 mod q}
aka the SIS problem

H =

e

s
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Lattices&Codes: algorithms

L C

Algorithms for finding a short vector:

Enumeration algorithms ISD algorithms

Sieving for lattice vectors Sieving for codes1

1Guo, Q., Johansson, T., Nguyen, V.: A new sieving-style information-set decoding algorithm.
Ducas L, Esser A., Etinksi S., Kirshanova E.: Asymptotics and omprovements of sieving for codes



Part II

Sieving for codes



Idea of sieving in lattices

Saturate space with enough lattice vectors so that their sums give short(er) vectors

L L=

L′
x1 ± x2

||x1 ± x2||
is small

L′=

...
poly(n)

0

Questions to be addressed: size of L (memory), time to find all close pairs
(complexity). Best known algorithm for the short vector problem.
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Idea of sieving in binary codes

Keep weight constant, move gradually from subcodes Ci := {e : (He)[0 : i] = 0} to
the code C: C1 ⊂ C2 . . . ⊂ C. Choose some weight p ≤ ω.

L L

e1
e2

= wt(ei) = p
(Hei)[0] = 0

L′
e1 + e2 = e′

wt(e′) = p,
(He′)[1] = 0

e′

L′=

...
n

H =

0

e

wt(e) = p

0

e′

wt(e′) = p

0

0

0

0

0
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Setting up ISD with Sieving: systematic form

= 0

e

Hn− k

n

e1

e2

H1 H2

n− k k

e1

e2

In−k H ′

n− k k

e1

e2

In−k−`

0

H ′

H ′′

n− k − ` k + `

e1

e2

In−k−`

0

H ′

H ′′

n− k − ` k + `

=⇒
H ′e2 + e1 = 0

H ′′e2 = 0

e1

e2

In−k−`

0

H ′

H ′′

n− k − ` k + `

=⇒
H ′e2 + e1 = 0

H ′′e2 = 0

Sieve for e2

wt(e2) = p,wt(e1) = ω − p

Apply permutations on H until achieve the correct weight distribution on e1, e2.
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Sieving for codes: the algorithm

1. Randomly permute H and compute H ′′.

2. Construct L0, |L0| = N with vectors v s.t.
wt(v) = p and (H ′′v)[0] = 0.

3. For i = 1, . . . , n :

3.1 Find all pairs v,v ∈ Li−1 with
wt(v + v′) = p, store them in Li

3.2 Discard all v ∈ Li s.t. v /∈ Ci

4. Check all v ∈ Ln for v ?
= e′′

Runtime

Success Probability:
Pr[wt(e′′) = p]

(n−k−`w−p )(k+`
p )

(nw)

·Pr[e′′ ∈ Ln]

N

(k+`
p )/2`

Time per iteration (Steps 1–4)

n · TNN
TNN − runtime of Near Neighbor
search (Step 3.1)
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Glimpse of the analysis
How large is N?

• Want: |w ∈ Li : w ∈ Ci| ≥ N
• Each new parity-check equation eliminates half of the list elements:

Pr[w ∈ Ci | w ∈ Li = Pr[w ∈ Ci | w ∈ Ci−1] =
|Ci|
|Ci−1|

= 1/2

• We want to keep (asymptotically) the same list sizes:

E
[
|w ∈ Li : w ∈ Ci|

]
= E

[
|Li|
]
/2

!

≥ |Li−1| =: N

• E
[
|Li|
]

= |Li−1|2 · Pr[wt(v + v′) = p : wt(v) = wt(v′) = p] =

= N2 ·

(
k+`
p

)
·
(

p
p/2

)(
k+`−p
p/2

)(
k+`
p

)2 =
!

≥ 2N ⇔ N ≥
2
(
k+`
p

)(
p

p/2

)(
k+`−p
p/2

)

How large is TNN?

Depends on the algorithm...
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ISD with Sieving: asymptotics (worst-case rate, GV bound error)

0.117

GJN

0.117

GJN

0.1007

Sieving with Code

0.1001

Sieving with RPC

0.096

Both-May

0.102

BJMM

0.121

Prange

0.112

MMT

• wt(v1) = wt(v2) = wt(v1 + v2) = p ⇒ wt(v1 ∧ v2) = p/2

• Idea: Enumerate potential overlap for each vector
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• wt(v1) = wt(v2) = wt(v1 + v2) = p ⇒ wt(v1 ∧ v2) = p/2

• Idea: put another random code on top, decode all vi’s w.r.t. code. Close
vi’s will decode to the same codeword(s).
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of them faster.
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Conclusions

• Take-away: lattice sieving including NN technique translate to codes in
Hamming metric

• Open research direction: k-sieve (time-memory trade-offs)

• Full version: https://eprint.iacr.org/2023/1577

• Slides:
https://crypto-kantiana.com/elena.kirshanova/talks/MWCC24.pdf

Q?

https://eprint.iacr.org/2023/1577
https://crypto-kantiana.com/elena.kirshanova/talks/MWCC24.pdf
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Part III

From codes to lattices: dense lattice construction



Lattice invariants

0

b1

b2

c

Minimum

λ1(Λ) = minv∈Λ\0 ‖v‖2

Determinant

det(Λ) = |det(bi)i|
Minkowski bound

λ1(Λ) ≤
√
n · det(Λ)

1
n

Normalized min. distance√
γ(Λ) = λ1(Λ)/ det(Λ)

1
n

A lattice is a set Λ = {
∑

i≤n xibi : xi ∈ Z} for linearly independent bi ∈ Rn.
{bi}i is a basis of Λ



Our goal

√
γ(Λ) = λ1(Λ)/ det(Λ)

1
n ≤
√
n

We are interested in

1. explicit construction of a lattice with as large γ(Λ) as possible
2. with an efficient (list-) decoding algorithm (runtime at most poly(n)).

Why? We might want to use lattice as codes, hence we care about their
decoding properties.

A ‘random’ lattice (an example will given later) is expected to achieve√
γ(Λ) ∼

√
n, but we do not know how to efficiently decode them.
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State-of-the art on
√
γ(Λ) (Ω() for

√
γ(Λ) is omitted)

Defined by the rows of

BWk =

[
1 1

0 φ

]⊗k
⊂ C2k,

where φ = 1 + i

For (Z/mZ)?,

pi – primes, 1 ≤ i ≤ n

φ : Zn → (Z/mZ)?

(x1, . . . , xn) 7→
∏n

i=1 p
xi
i

Λdlog = kerφ.

Lifting sequences of
codes to lattices

Constriction-A:
Take B ∈ (Z/qZ)n×m –

a generator matrix of a code.

ΛA = ZnB + qZm ⊂ Zm
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Main result

Theorem: For a constant ε > 0, there is a family of lattices
L ⊂ Rn with normalized minimum distance

λ1(Λ)

det(Λ)1/n
= Ω

( √
n

(log n)ε+o(1)

)
.

These lattices are list decodable to within distance
√

1/2 · λ1(Λ)
in poly(n) time.



Construction-D lattice: simplified definition
• Fix an integer L ≥ 0, let

CL ⊆ CL−1 ⊆ . . . ⊆ C1 ⊆ C0 = Fn
p

be a tower of p-ary codes of length n, where dim(Ci) = ki.

• Let b1, . . . ,bn be a basis of Fn
p s.t.

b1, . . . ,bki is a basis of Ci for all i = 0, . . . , L.

• Define a set of distinguished Zn representatives of ci =
∑ki

j=1 ajbj ∈ Ci as

ci =

ki∑
j=1

ajbj ∈ Zn where aj ∈ {0, . . . p− 1} ⊂ Z.

• Let L0 = Zn, and for each i = 1, . . . , L define

Λi = Ci + pΛi−1, Ci = {ci : ci ∈ Ci}.
• The construction-D for the tower {Ci} is Λ = ΛL.
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Main idea

• Construct a sequence of codes CL ⊆ CL−1 ⊆ . . . ⊆ C1 ⊆ C0 = Fn
q , each Ci

is an algebraic-geometric code from a specific function field, the
Garcia-Stichtenoth field.

• Such AG-codes are defined over Fph for an even h, hence go to
subfield-subcodes:

CL ∩ Fn
p ⊆ CL−1 ∩ Fn

p ⊆ . . . C0 ∩ Fn
p = Fn

p ,

• We know dim(Ci ∩ Fn
p ) and minimal distance of Ci ∩ Fn

p for all i.

• Compute the minimum λ1(ΛL) of the construction-D lattice ΛL.

• Compute (an upper bound on) det(ΛL).

• Conclude on γ(Λ) = λ1(Λ)/ det(ΛL).

• For efficient decoding, adapt soft decision decoding algorithm of
Koetter-Vardy.



Conclusions

• Take you favourite code (may be an AG code) with a poly-time decoding
algorithm.

• Construct a sequence of codes with a lower bound on min. distance and
on dimension.

• These suffice to derive λ1(Λ) and (a lower bound) on det(Λ).

• Check if you beat the state-of-the-art.

• Interesting candidate: Bassa-Ritzenthaler towers, (arXiv:1807.05714)


