
CIMPA SCHOOL October 23 – November 4, 2023

LAB 2: BREAKING MERKLE-HELLMAN CRYPTOSYSTEM

An encryption scheme proposed proposed by Merkle-Hellman in 1978 [1] was shortly after broken by Adi
Shamir [2]. Your task will be to implement the attack and break concrete instances. Let us start with a description of
the encryption scheme.

Definition 1 (Superincreasing sequence). Superincreasing sequence is a tuple r = (r1, . . . , rn) of positive numbers
such that

ri > 2ri−1, 2 ≤ i < n.

From the definition it follows that rk > rk−1 + . . . r1 for all 2 ≤ k ≤ n. For a superincreasing sequence,
the following knapsack problem has an efficient solution: given S ∈ Z such that there exists b ∈ {0, 1}n with the
property

S =

n∑
i=1

biri,

find b. Such b can be found via the following algorithm

Algorithm 2 Solving superincreasing knapsack
Input: r = (r1, . . . , rn), S ∈ Z
Output: b s.t. S =

∑n
i=1 biri

1: b = 0
2: for i from n to 1 do
3: if S > ri then
4: bi = 1
5: S = S − ri
6: end if
7: end for
8: return b

Let n be a public parameter. Key generation function KeyGen, encryption function Enc, and decryption function
Dec are defined as follows.

KeyGen(n).

1. Generate a random superincreasing sequence r (the precise method of ‘random’ is irrelevant for this
discussion).

2. Choose A, q such that q > rn and gcd(A, q) = 1.

3. Compute the sequence Mi = Ari mod q

4. Set pk = M, sk = (A−1 mod q, q, r).

Enc(pk,m ∈ {0, 1}n).

1. Return ciphertext c =
∑n

i=1Mimi ∈ Z

Dec(sk, c).

1. Compute c′ = cA−1 mod q



2. Using Algorithm 1 with input c′, r find m′ ∈ {0, 1}n.

You can convince yourself in the correctness of the scheme. There is no need to convince yourself in its security
since now you’ll see an efficient attack on it.

Shamir’s attack recovers message m from the knowledge of the corresponding ciphertext and the public key.
Consider the lattice generated by the rows of the following (n+ 1)× (n+ 1) matrix

B =


2 0 0 . . . 0 M1

0 2 0 . . . 0 M2

0 0 2 . . . 0 M3
...

...
...

. . .
...

...
−1 −1 −1 . . . −1 −c


Note that if m is the message for the ciphertext c, i.e., c =

∑n
i=1Mimi, then L(B) contains t = (2m1 −

1, 2m2 − 1, 2m3 − 1, . . . , 0) ∈ Zn+1. For a binary m, this vector is the shortest of L(B) with high probability and,
for many interesting parameters, can be efficiently found via LLL.

Task

1. Download script merkle− hellman.sage. There you’ll find implementations of KeyGen, Enc, Dec. You do not
need to modify them.

2. Implement Shamir’s attack in the function attack().

3. Check the correctness of your implementation by running

sage -t merkle hellman.sage

All three tests should pass.
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