
CIMPA School October 23 – November 4, 2023

Lab 3: Coppersmith’s attack on Low RSA exponent

1 Coppersmith’s algorithm for small root finding

Coppersmith’s attack on the one-way RSA function relies on the following theorem shown in [1].

Theorem 1. Let N ∈ N+, f ∈ Z[x] be a monic polynomial of degree n. Let further X = N
1
n
−ε for ε > 0.

Then there exists an algorithm that finds all |x0| < X satisfying f(x0) = 0 mod N , in time equal to the
running time of the LLL algorithm on a lattice of dimension O(min{1ε , log2N}).

A nice feature of this theorem is that the modulus N can be composite with unknown factorization
(for prime moduli there is no need in this theorem because we know more efficient algorithms to factor
polynomials in such cases).

In order to prove Coppersmith’s theorem, we start with the result due to Howgrave-Graham [2]. In
what follows, with a polynomial h(x) =

∑n
i=0 aix

i ∈ Z[x] we associate the coefficient vector (ai)i ∈ Zn1 and
define its squared norm as ‖h‖2 =

∑
i |ai|

2.

Lemma 2. Let h(x) ∈ Z[x] be a polynomial of degree n and X > 0 be integer. Assume,‖h(xX)‖ < N/
√
n.

If |x0| < X satisfies h(x0) = 0 mod N , then h(x0) = 0 holds over the integers.

Proof. Consider

|h(x0)| =

∣∣∣∣∣∑
i

aix
i
0

∣∣∣∣∣ =

∣∣∣∣∣∑
i

aiX
i
(x0
X

)i∣∣∣∣∣ ≤∑
i

∣∣∣∣aiXi
(x0
X

)i∣∣∣∣
<
∑
i

∣∣aiXi
∣∣ ≤ √n ‖h(xX)‖ < N.

From this inequality and the condition h(x0) = 0 mod N , it follows that h(x0) ≡ 0.

Lemma 2 states that if h is a polynomial of small norm, then all its roots mod N that are small in the
absolute value, are also its roots over Z. Therefore, the idea is, for a polynomial f(x) not necessarily of
small norm, we will be searching for a polynomial h(x) of small norm whose roots coincide with the roots
of f(x).

We could have started with linear combinations of the polynomials f, xf, x2f, . . ., but they are unlikely
to give the desired norm. Coppersmith suggested to add to the above list of polynomials powers of f(x)
noting that if f(x) = 0 mod N , then f(x)i = 0 mod N i for any i > 1. Overall, define, for some integer m,1

the following polynomials

gi,j(x) = Nm−ixjf(x)i, for i = 0, . . . ,m− 1, j = 0, . . . n− 1.

Then an x0 – a root of f(x) – is a root of gi,j(x) mod Nm for all i ≥ 0. Now we are ready to search for
h(x) – a linear combination of gi,j(x)’s such that the norm of h(xX) does not exceed Nm (such a choice of
polynomials gi,j(xX) allows to increase the bound from N to Nm).

Now let us dive into the solving the problem of finding a small-norm linear combination of polynomials.
Identifying gi,j(xX) with its coefficient vector, the task of finding h(x) boils down to the task of finding a
short vector in the lattice L generated by the matrix, which contains in its i-th column the coefficients of

1A thorough analysis shows that m = d 1
nε

e suffices, in practice we shall choose m to be a small constant.

xi monomial of gi,j(x)’s. We obtain a lattice of dimension w = nm with a lower-triangular basis matrix
(we first order gi,j(x)’s by i and then by j). For example, for n = 2,m = 3 the matrix will be of the form

x0 x1 x2 x3 x4 x5

g0,0(xX) N3

g0,1(xX) ? N3X
g1,0(xX) ? ? N2X2

g1,1(xX) ? ? ? N2X3

g2,0(xX) ? ? ? ? NX4

g2,1(xX) ? ? ? ? ? NX5

The ? entries the coefficients of gi,j(xX), the empty entries are zeros. If we run LLL reduction on this basis
(this basis is already give by the rows! just like in FPyLLL/Sage), we obtain a lattice vector v such that
‖v‖ ≤ 2w det(L)1/w. The determinant of L can be approximated as2:

det(L) =
m−1∏
i=0

N (m−i)n
n−1∏
j=0

m−1∏
i=0

XjXni =
m∏
i=1

N in
nm−1∏
i=0

Xi =

= N
m(m+1)n

2 X
mn(mn−1)

2 ≈ N
m2n
2 X

m2n2

2 .

For the vector v (that corresponds to the polynomial h(xX)) returned by LLL to satisfy the bound
from Lemma 2, the following inequality should hold

2w det(L)1/w <
Nm

√
w
.

Substituting the approximation for det(L) and ignoring small terms, the above inequality can be rewritten
as

det(L) ≤ Nmw ⇐⇒ X ≤ N1/n,

that corresponds to the bound stated in Theorem 1 up to ε that appears due to simplifications.

2 What does it have to do with RSA?

2.1 Stereotypical messages

RSA encryption is based on the “one-way function with trapdoor” of the form x 7→ xe mod N for some
e ∈ Z?

N : knowing d = e−1 mod φ(N), one can easily invert it. School-book RSA (which is, on its own, not
secure) computes, for a message m, the corresponding ciphertext as c = me mod N .

One of the ways to make the exponentiation efficient is to choose small e (such a choice is insecure and
is not used in modern implementations), e.g., e = 3. In this exercise you are going to convince yourself
that e = 3 is a bad idea. For example, consider what is called “stereotypical messages” such as ”your OTP
is XXXX”. An encryption for such message is (S + x)e mod N , where S is the known part of the message
(“your OTP is” in our example), and x is unknown. Then the ciphertext can be viewed as the polynomial
f(x) = (S + x)e − c mod N , where x is a root. If the public exponent e is small, then Coppersmith’s
algorithm efficiently recovers x since the dimension of the lattice L constructed as above, will be small.

2the factors that not explicitly mentioned, are moved into ε

Page 2

2.2 Random padding

An attack on RSA encryption of related messages was proposed by Franklin and Reiter in 1996 [3]. Assume
two messages m,m′ are related as m = m′ + r, where r is small (for example, if for the encryption
of the ith message a so-called padding Ri = i < 2k is used in order to randomize the messages, then
ci = (m · 2k + i mod N); such a randomization method is not secure). Then for e = 3, we have

c = m3 mod N

c′ = (m+ r)3 mod N.

From c, c′, r, one can easily obtain m (think how, you’ll need it later). What if we do not know r, but
we know that it is small? Then the two ciphertexts c, c′ give the following system

m3 − c = 0 mod N

(m+ r)3 − c′ = 0 mod N,

where the unknowns are m, r. Using the method of resultants (classical approach to eliminate unknowns
from a system3), we obtain a univariate polynomial in r:

resm(m3 − c, (m+ r)3 − c′) = r9 + (3c− 3c′)r6 + 3r3(c2 + 7cc′ + c′2) + (c− c′)3 mod N.

The obtained polynomial f(r) = r9 + (3c− 3c′)r6 + 3r3(c2 + 7cc′ + c′2) + (c− c′)3 of degree 9 has r as
its root. If r < N1/9, we can efficiently find it using Theorem 1.

3 Task

In the file Lab3Input.txt, you are given an RSA public key (N, e = 3) and two ciphertexts (c, c′) encrypting
(m,m′) that are related via small r. You should find r and m,m′. In your implementation you can use
X = b0.5 ·N1/9c, and when defining the polynomials gi,j , you can take m = 5.

References

[1] Don Coppersmith. Small solutions to polynomial equations, and low exponent RSA vulnerabilities.
Journal of Cryptology, 10:233–260, 1997

[2] Nick Howgrave-Graham Finding small roots of univariate modular equations revisited.. Cryptography
and Coding, volume 1355 of Lecture Notes in Computer Science, 131–142. Springer-Verlag, 1997.

[3] Don Coppersmith, Matthew Franklin, Jacques Patarin, Michael Reiter. Low-Exponent RSA with Related
Messages Eurocrypt’96.

3in the concrete exercise you’ll need only the value of the resultant

Page 3

	 Coppersmith's algorithm for small root finding
	What does it have to do with RSA?
	Stereotypical messages
	Random padding

	Task

