SVP algorithms. BKZ

Elena Kirshanova

Technology Innovation Institute, Abu Dhabi, UAE

CIMPA Summer School, Rabat

S

These slides are available here:

https:
//crypto-kantiana.com/elena.kirshanova/teaching/ssRabat/SVP_Rabat .pdf

https://crypto-kantiana.com/elena.kirshanova/teaching/ssRabat/SVP_Rabat.pdf
https://crypto-kantiana.com/elena.kirshanova/teaching/ssRabat/SVP_Rabat.pdf

Links |
Exercises, labs are available on the webpage:

https://crypto-kantiana.com/elena.kirshanova/teaching/
summerschoolRabat2023.html

https://crypto-kantiana.com/elena.kirshanova/teaching/summerschoolRabat2023.html
https://crypto-kantiana.com/elena.kirshanova/teaching/summerschoolRabat2023.html

Agenda

® Today: Lectures
® Tomorrow: Exercises

e Friday: Labs

Labs

e For Labl you need to install FPyLLL
https://github.com/fplll/fpylll

e |t is available via SageMathCell and CoCalc (select a Jupyter notebook
with a Sage kernel)

e For Lab2 and Lab3 you need Sage on your machine (Lab2 is checked via
automated tests)

® | abs can be solved in teams of max 3 people

® Try to install FPyLLL or play with it in CoCalc

https://github.com/fplll/fpylll

Prize

The fastest team to obtain correct®
solutions/implementations gets an unforgettable prize!

The correctness will be judged by the lecturer

Content of the lectures

> W

The shortest vector problem
Kannan-Finke-Pohst Enumeration algorithm
Sieving algorithm

Block Korkine-Zolotarev reduction

Solving LWE with BKZ

Part |

The shortest vector problem

A lattice: definition .

. | /bl) .
. * by e *
[] 0 [] []

A lattice is the set £ = {Zzgn x;b; : x; € Z} for some linearly independent b;'s.
For us, b; € Z™ and L is full-rank.

Short vectors in £ O O

. % oo
. * by e *
[] 0 [] []
[[] []

The Shortest Vector Problem (SVP) asks to find non-zero v of minimal Euclidean length.

We do not know ||v|| in general, but for any n-rank L:

|[Vehortest|| < v/ - det(L£)Y™ (Minkowski's bound)

Hardness of SVP (small-order terms are omitted)

||VshortestH S \/ﬁ : det(ﬁ)l/n

Approximate SVP asks to find veport:

||VshortH < v \/ﬁ o det(L)l/"

Hardness of SVP (small-order terms are omitted)

HvshortestH S \/ﬁ : det(ﬁ)l/n

Approximate SVP asks to find veport:

||Vsh0rtH < v \/ﬁ o det(L)l/”

NP‘—hard 9cn O‘I’ 2c.nlogn 25, ‘BKZ poly(n), LLL Time
\ \ \ \ 7
210g1_5 n poly(n) % log 8 nloglogn
(LWE/SIS) 2 9 logn

Hardness of SVP (small-order terms are omitted)

||Vsh0rtestH S \/ﬁ : det(ﬁ)l/n

Approximate SVP asks to find veport:

||VshortH < v \/ﬁ o det(ﬁ)l/”

Npl_hard gen O‘r gcnlogn| 98 ‘BKZ poly(nl), LLL o
{ { { { v
210g1_‘S n poly(n) % log 3 nloglogn
(LWE/SIS) | 2 9 logn

Practical Algorithms for SVP

e Enumeration

® Sieving (Provable/Heuristic)

Practical Algorithms for SVP
e Enumeration

Time = 2((1/2€)+0(1))n10gn

V' Lots of improvements for the o(nlogn)-term
v (Somewhat) easy to parallelize

® Sieving (Provable/Heuristic)

Memory = poly(n)

Practical Algorithms for SVP
e Enumeration
Time = 2((1/2e)toll)nlogn Nemory = poly(n)

V' Lots of improvements for the o(nlogn)-term
v (Somewhat) easy to parallelize

® Sieving (Provable/Heuristic)
Time = 2(2.465+0(1))n Memory — 2(1'325"’0(1))”
Time = 2(0‘292”‘0(1))” |\/|emory _ 2(0.2075+0(1))n

v" Big o(n)-factors
v’ Parallelization is painful
V" Time-memory trade-offs exist

Part Il

Kannan-Finke-Pohst Enumeration algorithm

Enumeration algorithm for SVP: main idea

I[dea: enumerate all lattice vector within a ball of certain radius k.

1. INPUT: basis B = QR, R € R"*"™ — R-factor

Enumeration algorithm for SVP: main idea

Idea: enumerate all lattice vector within a ball of certain radius k.

1. INPUT: basis B = QR, R € R"*"™ — R-factor
2. Set k = ||by|| — a bound
3. Let x € Z™ be the coefficient vector of b = Bx. Then

n n n
1Bx||* = || Rx||* = | (Z PLiTi, Y T2 - .,rn,nxn> P=>" 1D
i=1

=2 j=1 \i=j

Enumeration algorithm for SVP: main idea

Idea: enumerate all lattice vector within a ball of certain radius k.

1. INPUT: basis B = QR, R € R"*™ — R-factor
2. Set k = ||by|| — a bound
3. Let x € Z™ be the coefficient vector of b = Bx. Then

n

n n
H3ﬂ2—HRﬂP—H(E:ﬁﬂ%E:ﬁﬂ%~wﬁm%>H2—§: VT
i=1 =2

j=1 \i>j
We are going to enumerate x;'s for i = n,..., 1, keeping the value
2
Z?:l <21>J Tj,iﬂfi) bounded.

Enumeration algorithm for SVP

1. Take all z, € Z s.t. |z,| < 2.
Tn ° ° ° o

Enumeration algorithm for SVP

1. Take all &, € Z s.t. |z,| < &

In Tn,n
/ /\ \ 2. Fix @,. Take all z,_1 € Z s.t.
Tn—1 Tn—1,n < (sz("'n,nxn)2>1/2

Tp—1 + x
n—1 Tn—1,n—1 e Tn—1,n—1

Enumeration algorithm for SVP

1. Take all &, € Z s.t. |z,| < &

T Tnn
\ 2. Fix x,,. Take all x,_1 € Z s.t.
Bp=1 21+ TZ,_L;}",:% < (kza(fi’:ffP)l/Q
3. For fixed z,, x,_1, take all ‘legitimate’ z,, o € Z
Tn—2@ [}

Enumeration algorithm for SVP

N 1. Take all z, € Z s.t. |z,] < rf,n'
\ 2. Fix x,,. Take all x,_1 € Z s.t.
et + 2k < (Ertpaml)
3. For fixed z,, x,_1, take all ‘legitimate’ z,, o € Z
e 4. Continue all the way to z's.

710 © © © © © 06 06 0 0 0 00O

Complexity

The size of the enumeration tree of the above algorithm that receives on input an
o 5 5 o o 2 o
LLL-reduced basis B of an n-dimensional lattice is 2"") . [t can be traversed using

poly(n) memory.

A proof to be shown in TD.

One can tweak the algorithm by making the smallest r; ;'s larger. This gives the
enumeration tree to the size 23 +o(®), [Kan83,HanSte07]

Part 1l

Sieving

https://sites.google.com/a/x.bestledlights.cf/a223/1-32772214555

Basic 2-Sieve (Nguyen-Vidick sieve)
Main idea in all sieving algorithms: saturate space with enough lattice vectors so that
their sums give short(er) vectors

L (L . . ’
B [J °)
) ° [
[} [} (]
[} [°
.o 6. ’

Basic 2-Sieve (Nguyen-Vidick sieve)
Main idea in all sieving algorithms: saturate space with enough lattice vectors so that

their sums give short(er) vectors

Basic 2-Sieve (Nguyen-Vidick sieve)
Main idea in all sieving algorithms: saturate space with enough lattice vectors so that
their sums give short(er) vectors

[] [N
[] []
[] (] []
L || L o o
] (] [] [
[] [] []
[] (] o
[] [] []
X1 X2 o "7 R
HXl :l:X2|| L, ° /,/ ° \\\ °
is small s %
[]) \| o
.I\ [] I
\ /I L4
< S ° /

Basic 2-Sieve (Nguyen-Vidick sieve)
Main idea in all sieving algorithms: saturate space with enough lattice vectors so that
their sums give short(er) vectors

‘ | |
X1 :t XQ ® . ° . °
|X1 + X2|| L, ° ° °
is small ° e

Basic 2-Sieve (Nguyen-Vidick sieve)
Main idea in all sieving algorithms: saturate space with enough lattice vectors so that
their sums give short(er) vectors

[] .
[] []
[] []
L L ° °
] [] [] []
[] [] []
[] [] []
[] [] []
X1 :tXQ ° °
|1 £ %o | L L . . .
is small ° p
[] []
[] []
[]

poly(n) : g

How large |L| should be?

How large |L| should be?

Basic 2-Sieve (Nguyen-Vidick sieve)
Main idea in all sieving algorithms: saturate space with enough lattice vectors so that
their sums give short(er) vectors

L || L -n
B 3
_ _ 00.2075n
L] = 1] = 2
X1 + X9
llx1 £xo|| | L' |/ L' T(2-Sieve) — ’L’Q _ 20.415n
is small
; [] (.) (] .
poly(n) > J

SVP: conclusions

® Best known SVP algorithm require at least exponential (in lattice dimension) time

® \We do not know how to use the additional structure to significantly speed up
SVP algorithms for algebraic lattices

Open questions

® SVP in 45, norm, algebraic SVP
® Precise complexity of SVP taking into account memory costs
® Quantum speed ups for SVP/LWE/SIS?

Part IV

Block Korkine-Zolotarev (BKZ) algorithm

NF;—hard e olr gcnlogn | 98, IBKZ poly(r‘L), LIL
{ { { { ~
log'™*n poly(n) ug) nloglogn
2 (LWE/SIS) 26 ogf 9" logn

Small improvement at a time

® \We never call an SVP oracle on an non-preprocessed basis
® Having a "better quality” basis of L is beneficial for most (all?) algorithms

® \We try to gradually improve the “quality” of a basis

Quality - length of Gram-Schmidt vectors

Projected lattice
\ \ \

\
- b1,...,b, — basis of £

Tod

Projected lattice

\ \ \
- b1,...,b, — basis of £

- L1.; Is the lattice spanned by by, ..., b;
[] ®
[] []
. ° . /bz/./ £1
[/
° bl °
| | °
// ° °

Projected lattice

\ \ \

- b1,...,b, — basis of £

- L1.; is the lattice spanned by by, ..., b;.

- b? is the projection of b; on L1, ;. (GSO)

°) o
[} o °
[] >] L"l
° bx ° /bz/r
[2 /
® bl = Ioi(
[° °
// ° .

Projected lattice

. bl,...,bT‘L = bas‘is of‘L

- L1.; is the lattice spanned by by, ..., b;.

- b} is the projection of b; on L£i;; ; (GSO)

- L;.j is the orthogonal projection of L1.; on Eﬁi_l.

\[’2:3' °

L1
° b= ° /bz/r
° 2 /)1:/ °
. b1 .
[°]
| ° °

BKZ (simplified)
Notation: Ly, - orthogonal projection of Ly, on L3;,_;

Input: B = (b;),[
fork=2...n—1do L1
b SVP(E[k ; min{k-{—ﬁ—l,n}])
end for Il
if b is “short enough” then
Insert b into B

Remove lin. dependencies
end if

by by by ... by bgy ...

b,

BKZ (simplified)
Notation: Ly, - orthogonal projection of Ly, on L3;,_;

Input: B = (b;),[
for k=2 do L1 I I I

b+ SVP(L min{s+1.n)]) by by bs ... bg bgy; ... b,
end for [| | | |
if b is “short enough” then) ,

Insert b into B SVp

Remove lin. dependencies
end if

® BKZ runs this FOR-loop while there has been a change in the basis
® one run of this FOR-loop is called a tour

BKZ (simplified)
Notation: Ly, - orthogonal projection of Ly, on L3;,_;

Input: B = (b;),[
for k =3 do L1 I I I

b+ SVP(L(s min{s+2.n)]) b; by by ... bg bgy; ... b,
end for [| | | |
if b is “short enough” then) ,

Insert b into B SVpP

Remove lin. dependencies
end if

® BKZ runs this FOR-loop while there has been a change in the basis
® one run of this FOR-loop is called a tour

BKZ (simplified)
Notation: Ly, - orthogonal projection of Ly, on L3;,_;

Input: B = (b;),[
for k=4 do L1 I I I

b < SVP(Ly min{s+3n)]) by by bs ... bg bgy; ... b,
end for [| | | |
if b is “short enough” then) ,

Insert b into B SVP

Remove lin. dependencies
end if

® BKZ runs this FOR-loop while there has been a change in the basis
® one run of this FOR-loop is called a tour

BKZ (simplified)
Notation: Ly, - orthogonal projection of Ly, on L3;,_;

Input: B = (b;),[
fork=1...n—1do I | |

b « SVP(Lik ; min{k+s—1,n)]) bi by by ... bg bgyy ...
end for [| | |
if b is “short enough” then

Insert b into B SVVP

Remove lin. dependencies
end if

® BKZ runs this FOR-loop while there has been a change in the basis
® one run of this FOR-loop is called a tour

b,

BKZ: Output Quality and Runtime

® The running time of the algorithm is dominated by the SVP calls if we
bound the number of tours by poly(n).

e This leads to the complexity 2°®) when sieving is used for SVP and
20(Blogf) Question: memory?

® The approximation factor achieved by BKZ is (see TD):
Iball < BFTM(L).

Time to show the demo...

TODO

TODO

Part V

Solving LWE with BKZ

LWE is BDD

e A defines the Construction-A lattice

Lo(A) = AZD + qZ™

A

R

n

find

mod ¢ —» or

* W.h.p., £L4(A) is of dim. m and det(L,(A)) = ¢" ™.

®* As+emod g is a point near £,(A) at distance O(y/maq)

® (A, As+e) is a BDD instance on L4(A) with v = 4

1-n/m

aq

How do we solve BDD? Use an approxSVP algorithm! Kannan's Embedding

For a BDD instance (£,t), where B is a basis of £, and c is a constant, let
7=[s

e Columns of B’ are linearly independent
® | et Bx be the solution
e For “properly” chosen c and t - sufficiently close to L,

BEERE

— is the shortest vector in £L(B’) (much shorter than any other v € L(B’)
non-parallel to it).

Kannan's embedding in pictures

e

Kannan's embedding in pictures

Hardness of LWE

cn cf
‘2 2 ,‘ BKZ poly(r‘b), LLL S
\ \ \
poly(n) 1 1og 9 on U
BE For LWE
parameters (n,m, q, @), v = 4 oz;m
lgg . (nlgq
T(LWE) =exp (c- ——1g (,) n,

lg” lg”

where c is the constant in the exponent of SVP complexity, i.e., T((SVP))>”.
This complexity is obtained by solving for

m 1-n/m

28 log 8 _ q
aq
and choosing m = Q(n) that minimizes the solution.

References

[BDGL16] A. Becker, L. Ducas, N. Gama, T. Laarhoven. New directions in nearest neighbor
searching with applications to lattice sieving.

® [FP83] U. Fincke and M. Pohst. A procedure for determining algebraic integers of given norm.

® [HSO07] Guillaume Hanrot and Damien Stehlé. Improved analysis of Kannan's shortest lattice
vector algorithm.

® [Kan83] Ravi Kannan. Improved algorithms for integer programming and related lattice
problems.

® [Kan87] Ravi Kannan. Minkowski's convex body theorem and integer programming.
® [NVO08] P. Nguyen, T. Vidick. Sieve algorithms for the shortest vector problem are practical.

e [S87] Claus-Peter Schnorr. A hierarchy of polynomial time lattice basis reduction algorithms.

