SVP algorithms. BKZ

Elena Kirshanova

Technology Innovation Institute, Abu Dhabi, UAE
CIMPA Summer School, Rabat

These slides are available here:

https:
//crypto-kantiana.com/elena.kirshanova/teaching/ssRabat/SVP_Rabat.pdf

Exercises, labs are available on the webpage:

https://crypto-kantiana.com/elena.kirshanova/teaching/ summerschoolRabat2023.html

Agenda

- Today: Lectures
- Tomorrow: Exercises
- Friday: Labs
- For Lab1 you need to install FPyLLL https://github.com/fplll/fpylll
- It is available via SageMathCell and CoCalc (select a Jupyter notebook with a Sage kernel)
- For Lab2 and Lab3 you need Sage on your machine (Lab2 is checked via automated tests)
- Labs can be solved in teams of max 3 people
- Try to install FPyLLL or play with it in CoCalc

The fastest team to obtain correct* solutions/implementations gets an unforgettable prize!

The correctness will be judged by the lecturer

Content of the lectures

1. The shortest vector problem
2. Kannan-Finke-Pohst Enumeration algorithm
3. Sieving algorithm
4. Block Korkine-Zolotarev reduction
5. Solving LWE with BKZ

Part I
The shortest vector problem

A lattice is the set $\mathcal{L}=\left\{\sum_{i \leq n} x_{i} \mathbf{b}_{i}: x_{i} \in \mathbb{Z}\right\}$ for some linearly independent \mathbf{b}_{i} 's.
For us, $\mathbf{b}_{i} \in \mathbb{Z}^{n}$ and \mathcal{L} is full-rank.

Short vectors in \mathcal{L}

The Shortest Vector Problem (SVP) asks to find non-zero vof minimal Euclidean length.

We do not know $\|\mathbf{v}\|$ in general, but for any n-rank \mathcal{L} :

$$
\left\|\mathbf{v}_{\text {shortest }}\right\| \leq \sqrt{n} \cdot \operatorname{det}(\mathcal{L})^{1 / n} \quad(\text { Minkowski's bound })
$$

$$
\left\|\mathbf{v}_{\text {shortest }}\right\| \leq \sqrt{n} \cdot \operatorname{det}(\mathcal{L})^{1 / n}
$$

Approximate SVP asks to find $\mathbf{v}_{\text {short }}$:

$$
\left\|\mathbf{v}_{\text {short }}\right\| \leq \gamma \cdot \sqrt{n} \cdot \operatorname{det}(\mathcal{L})^{1 / n}
$$

$$
\left\|\mathbf{v}_{\text {shortest }}\right\| \leq \sqrt{n} \cdot \operatorname{det}(\mathcal{L})^{1 / n}
$$

Approximate SVP asks to find $\mathbf{v}_{\text {short }}$:

$$
\left\|\mathbf{v}_{\text {short }}\right\| \leq \gamma \cdot \sqrt{n} \cdot \operatorname{det}(\mathcal{L})^{1 / n}
$$

$$
\left\|\mathbf{v}_{\text {shortest }}\right\| \leq \sqrt{n} \cdot \operatorname{det}(\mathcal{L})^{1 / n}
$$

Approximate SVP asks to find $\mathbf{v}_{\text {short }}$:

$$
\left\|\mathbf{v}_{\text {short }}\right\| \leq \gamma \cdot \sqrt{n} \cdot \operatorname{det}(\mathcal{L})^{1 / n}
$$

Practical Algorithms for SVP

- Enumeration
- Sieving (Provable/Heuristic)

Practical Algorithms for SVP

- Enumeration

$$
\text { Time }=2^{((1 / 2 e)+o(1)) n \log n}
$$

Memory $=\operatorname{poly}(n)$

\checkmark Lots of improvements for the $o(n \log n)$-term
\checkmark (Somewhat) easy to parallelize

- Sieving (Provable/Heuristic)

Practical Algorithms for SVP

- Enumeration

$$
\text { Time }=2^{((1 / 2 e)+o(1)) n \log n}
$$

Memory $=\operatorname{poly}(n)$

\checkmark Lots of improvements for the $o(n \log n)$-term
\checkmark (Somewhat) easy to parallelize

- Sieving (Provable/Heuristic)

$$
\begin{aligned}
\text { Time } & =2^{(2.465+o(1)) n} \\
\text { Time } & =2^{(0.292+o(1)) n}
\end{aligned}
$$

$$
\text { Memory }=2^{(1.325+o(1)) n}
$$

$$
\text { Memory }=2^{(0.2075+o(1)) n}
$$

\checkmark Big o(n)-factors
\checkmark Parallelization is painful
\checkmark Time-memory trade-offs exist

Part II
Kannan-Finke-Pohst Enumeration algorithm

Enumeration algorithm for SVP: main idea

Idea: enumerate all lattice vector within a ball of certain radius k.

1. INPUT: basis $B=Q R, R \in \mathbb{R}^{n \times n}-\mathrm{R}$-factor

Enumeration algorithm for SVP: main idea

Idea: enumerate all lattice vector within a ball of certain radius k.

1. INPUT: basis $B=Q R, R \in \mathbb{R}^{n \times n}-\mathrm{R}$-factor
2. Set $k=\left\|\mathbf{b}_{1}\right\|-$ a bound
3. Let $\mathbf{x} \in \mathbb{Z}^{n}$ be the coefficient vector of $\mathbf{b}=B \mathbf{x}$. Then

$$
\|B \mathbf{x}\|^{2}=\|R \mathbf{x}\|^{2}=\left\|\left(\sum_{i=1}^{n} r_{1, i} x_{i}, \sum_{i=2}^{n} r_{2, i} x_{i}, \ldots, r_{n, n} x_{n}\right)\right\|^{2}=\sum_{j=1}^{n}\left(\sum_{i \geq j} r_{j, i} x_{i}\right)^{2}
$$

Enumeration algorithm for SVP: main idea

Idea: enumerate all lattice vector within a ball of certain radius k.

1. INPUT: basis $B=Q R, R \in \mathbb{R}^{n \times n}-\mathrm{R}$-factor
2. Set $k=\left\|\mathbf{b}_{1}\right\|-$ a bound
3. Let $\mathbf{x} \in \mathbb{Z}^{n}$ be the coefficient vector of $\mathbf{b}=B \mathbf{x}$. Then

$$
\|B \mathbf{x}\|^{2}=\|R \mathbf{x}\|^{2}=\left\|\left(\sum_{i=1}^{n} r_{1, i} x_{i}, \sum_{i=2}^{n} r_{2, i} x_{i}, \ldots, r_{n, n} x_{n}\right)\right\|^{2}=\sum_{j=1}^{n}\left(\sum_{i \geq j} r_{j, i} x_{i}\right)^{2}
$$

We are going to enumerate x_{i} 's for $i=n, \ldots, 1$, keeping the value $\sum_{j=1}^{n}\left(\sum_{i \geq j} r_{j, i} x_{i}\right)^{2}$ bounded.

Enumeration algorithm for SVP
$x_{n} \quad$ - \quad 1. Take all $x_{n} \in \mathbb{Z}$ s.t. $\left|x_{n}\right|<\frac{k}{r_{n, n}}$.

Enumeration algorithm for SVP

1. Take all $x_{n} \in \mathbb{Z}$ s.t. $\left|x_{n}\right|<\frac{k}{r_{n, n}}$.
2. Fix x_{n}. Take all $x_{n-1} \in \mathbb{Z}$ s.t.

$$
\left|x_{n-1}+\frac{r_{n-1, n}}{r_{n-1, n-1}} x_{n}\right|<\left(\frac{k^{2}-\left(r_{n, n} x_{n}\right)^{2}}{r_{n-1, n-1}}\right)^{1 / 2}
$$

Enumeration algorithm for SVP

1. Take all $x_{n} \in \mathbb{Z}$ s.t. $\left|x_{n}\right|<\frac{k}{r_{n, n}}$.
2. Fix x_{n}. Take all $x_{n-1} \in \mathbb{Z}$ s.t.
$\left|x_{n-1}+\frac{r_{n-1, n}}{r_{n-1, n-1}} x_{n}\right|<\left(\frac{k^{2}-\left(r_{n, n} x_{n}\right)^{2}}{r_{n-1, n-1}}\right)^{1 / 2}$
3. For fixed x_{n}, x_{n-1}, take all 'legitimate' $x_{n-2} \in \mathbb{Z}$

Enumeration algorithm for SVP

1. Take all $x_{n} \in \mathbb{Z}$ s.t. $\left|x_{n}\right|<\frac{k}{r_{n, n}}$.
2. Fix x_{n}. Take all $x_{n-1} \in \mathbb{Z}$ s.t.
$\left|x_{n-1}+\frac{r_{n-1, n}}{r_{n-1, n-1}} x_{n}\right|<\left(\frac{k^{2}-\left(r_{n, n} x_{n}\right)^{2}}{r_{n-1, n-1}}\right)^{1 / 2}$
3. For fixed x_{n}, x_{n-1}, take all 'legitimate' $x_{n-2} \in \mathbb{Z}$
4. Continue all the way to x_{1} 's.

Complexity

Theorem

The size of the enumeration tree of the above algorithm that receives on input an LLL-reduced basis B of an n-dimensional lattice is $2^{\left(n^{2}\right)}$. It can be traversed using poly (n) memory.

A proof to be shown in TD.

One can tweak the algorithm by making the smallest $r_{i, i}$'s larger. This gives the enumeration tree to the size $2^{\frac{n \log n}{2 e}+o(n)}$, [Kan83,HanSte07]

Part III

Sieving

Basic 2-Sieve (Nguyen-Vidick sieve)

Main idea in all sieving algorithms: saturate space with enough lattice vectors so that their sums give short(er) vectors

Basic 2-Sieve (Nguyen-Vidick sieve)

Main idea in all sieving algorithms: saturate space with enough lattice vectors so that their sums give short(er) vectors

Basic 2-Sieve (Nguyen-Vidick sieve)

Main idea in all sieving algorithms: saturate space with enough lattice vectors so that their sums give short(er) vectors

Basic 2-Sieve (Nguyen-Vidick sieve)

Main idea in all sieving algorithms: saturate space with enough lattice vectors so that their sums give short(er) vectors

Basic 2-Sieve (Nguyen-Vidick sieve)

Main idea in all sieving algorithms: saturate space with enough lattice vectors so that their sums give short(er) vectors

How large $|L|$ should be?

How large $|L|$ should be?
Assumption: vectors (normalized) in $|L|$ are uniform iid on S^{n-1}.

How large $|L|$ should be?
Assumption: vectors (normalized) in $|L|$ are uniform iid on S^{n-1}.

Basic 2-Sieve (Nguyen-Vidick sieve)

Main idea in all sieving algorithms: saturate space with enough lattice vectors so that their sums give short(er) vectors

SVP: conclusions

- Best known SVP algorithm require at least exponential (in lattice dimension) time
- We do not know how to use the additional structure to significantly speed up SVP algorithms for algebraic lattices

Open questions

- SVP in ℓ_{∞} norm, algebraic SVP
- Precise complexity of SVP taking into account memory costs
- Quantum speed ups for SVP/LWE/SIS?

Block Korkine-Zolotarev (BKZ) algorithm

- We never call an SVP oracle on an non-preprocessed basis
- Having a "better quality" basis of \mathcal{L} is beneficial for most (all?) algorithms
- We try to gradually improve the "quality" of a basis

Quality - length of Gram-Schmidt vectors

Projected lattice

Projected lattice

Projected lattice

Projected lattice

BKZ (simplified)

Notation: $\mathcal{L}_{[\ell ; r]}-$ orthogonal projection of $\mathcal{L}_{1: r}$ on $\mathcal{L}_{1: \ell-1}^{\perp}$

Input: $B=\left(\mathbf{b}_{i}\right), \beta$
$$
\text { for } k=2 \ldots n-1 \text { do }
$$
end for
$$
\mathrm{b} \leftarrow \operatorname{SVP}\left(\mathcal{L}_{[k ; \min \{k+\beta-1, n\}]}\right)
$$
if b is "short enough" then
Insert b into B
Remove lin. dependencies
end if

$$
\left(\begin{array}{ccccccc}
\mid & \mid & \mid & \mid & \mid & & \mid \\
b_{1} & b_{2} & b_{3} & \ldots & b_{\beta} & b_{\beta+1} & \ldots
\end{array} \mathbf{b}_{n}\right)
$$

BKZ (simplified)

Notation: $\mathcal{L}_{[\ell ; r]}-$ orthogonal projection of $\mathcal{L}_{1: r}$ on $\mathcal{L}_{1: \ell-1}^{\perp}$

```
Input: \(B=\left(\mathbf{b}_{i}\right), \beta\)
    for \(k=2\) do
    \(\mathrm{b} \leftarrow \operatorname{SVP}\left(\mathcal{L}_{[2 ; \min \{\beta+1, n\}]}\right)\)
    end for
    if b is "short enough" then
        Insert b into \(B\)
        Remove lin. dependencies
    end if
```

 \(\left(\begin{array}{ccccccc}\mid & \mid & \mid & & \mid & & \mid \\ b_{1} & b_{2} & b_{3} & \ldots & b_{\beta} & b_{\beta+1} & \ldots \\ \mid & \mid & \mid & & b_{n} & \mid & \\ \mid & \end{array}\right)\)
 - BKZ runs this FOR-loop while there has been a change in the basis
- one run of this FOR-loop is called a tour

BKZ (simplified)

Notation: $\mathcal{L}_{[\ell ; r]}-$ orthogonal projection of $\mathcal{L}_{1: r}$ on $\mathcal{L}_{1: \ell-1}^{\perp}$

```
Input: \(B=\left(\mathbf{b}_{i}\right), \beta\)
    for \(k=3\) do
    \(\mathrm{b} \leftarrow \operatorname{SVP}\left(\mathcal{L}_{[3 ; \min \{\beta+2, n\}]}\right)\)
    end for
    if b is "short enough" then
        Insert b into \(B\)
        Remove lin. dependencies
    end if
```

 \(\left(\begin{array}{ccccccc}\mid & \mid & \mid & & \mid & & \mid \\ b_{1} & b_{2} & b_{3} & \ldots & b_{\beta} & b_{\beta+1} & \ldots \\ \mid & \mid & \mid & & b_{n} & \mid & \\ \underbrace{}_{\text {SVP }}\end{array}\right)\)
 - BKZ runs this FOR-loop while there has been a change in the basis
- one run of this FOR-loop is called a tour

BKZ (simplified)

Notation: $\mathcal{L}_{[\ell ; r]}-$ orthogonal projection of $\mathcal{L}_{1: r}$ on $\mathcal{L}_{1: \ell-1}^{\perp}$

```
Input: \(B=\left(\mathbf{b}_{i}\right), \beta\)
    for \(k=4\) do
    \(\mathrm{b} \leftarrow \operatorname{SVP}\left(\mathcal{L}_{[4 ; \min \{\beta+3, n\}]}\right)\)
    end for
    if b is "short enough" then
        Insert b into \(B\)
        Remove lin. dependencies
end if
```

 \(\left(\begin{array}{ccccccc}\mid & \mid & \mid & & \mid & & \mid \\ b_{1} & b_{2} & b_{3} & \ldots & b_{\beta} & b_{\beta+1} & \ldots \\ \mid & \mid & \mid & & b_{n} & \mid & \\ \mid\end{array}\right)\)

SVP

- BKZ runs this FOR-loop while there has been a change in the basis
- one run of this FOR-loop is called a tour

BKZ (simplified)

Notation: $\mathcal{L}_{[\ell ; r]}-$ orthogonal projection of $\mathcal{L}_{1: r}$ on $\mathcal{L}_{1: \ell-1}^{\perp}$

```
Input: B=(\mp@subsup{b}{i}{}),\beta
    for }k=1...n-1 d
    b}\leftarrow\operatorname{SVP}(\mp@subsup{\mathcal{L}}{[k;\operatorname{min}{k+\beta-1,n}]}{}
    end for
    if b is "short enough" then
        Insert b into B
    Remove lin. dependencies
    end if
```

 \(\left(\begin{array}{ccccccc}\mid & \mid & \mid & & \mid & & \mid \\ b_{1} & b_{2} & b_{3} & \ldots & b_{\beta} & b_{\beta+1} & \ldots \\ \mid & \mid & \mid & \mid & b_{n} \\ & & \underbrace{}_{\text {SVP }} & & \mid\end{array}\right)\)
 - BKZ runs this FOR-loop while there has been a change in the basis
- one run of this FOR-loop is called a tour

BKZ: Output Quality and Runtime

- The running time of the algorithm is dominated by the SVP calls if we bound the number of tours by $\operatorname{poly}(n)$.
- This leads to the complexity $2^{\mathcal{O}(\beta)}$ when sieving is used for SVP and $2^{\mathcal{O}(\beta \log \beta)}$. Question: memory?
- The approximation factor achieved by BKZ is (see TD):

$$
\left\|\mathbf{b}_{1}\right\| \leq \beta^{\frac{n-1}{\beta-1}} \lambda_{1}(L) .
$$

Time to show the demo...

TODO

Part V

Solving LWE with BKZ

LWE is BDD

- A defines the Construction-A lattice

$$
\mathcal{L}_{q}(A)=A \mathbb{Z}_{q}^{n}+q \mathbb{Z}^{m}
$$

- W.h.p., $\mathcal{L}_{q}(A)$ is of $\operatorname{dim} . m$ and $\operatorname{det}\left(\mathcal{L}_{q}(A)\right)=q^{m-n}$.
- $A s+e \bmod q$ is a point near $\mathcal{L}_{q}(A)$ at distance $\Theta(\sqrt{m} \alpha q)$
- $(A, A s+e)$ is a BDD instance on $\mathcal{L}_{q}(A)$ with $\gamma=\frac{q^{1-n / m}}{\alpha q}$

How do we solve BDD? Use an approxSVP algorithm! Kannan's Embedding

For a BDD instance $(\mathcal{L}, \mathrm{t})$, where B is a basis of \mathcal{L}, and c is a constant, let

$$
B^{\prime}=\left[\begin{array}{ll}
B & \mathrm{t} \\
\mathbf{0} & \mathrm{c}
\end{array}\right]
$$

- Columns of B^{\prime} are linearly independent
- Let $B \mathbf{x}$ be the solution
- For "properly" chosen c and t-sufficiently close to \mathcal{L},

$$
\left[\begin{array}{cc}
B & \mathbf{t} \\
\mathbf{0} & \mathrm{c}
\end{array}\right] \cdot\left[\begin{array}{c}
\mathbf{x} \\
-1
\end{array}\right]=\left[\begin{array}{c}
B \mathbf{x}-\mathbf{t} \\
-\mathrm{c}
\end{array}\right]
$$

- is the shortest vector in $\mathcal{L}\left(B^{\prime}\right)$ (much shorter than any other $\mathbf{v} \in \mathcal{L}\left(B^{\prime}\right)$ non-parallel to it).

Kannan's embedding in pictures

Kannan's embedding in pictures

Hardness of LWE

For LWE
parameters $(n, m, q, \alpha), \gamma=\frac{q^{1-n / m}}{\alpha q}$

$$
T(\text { LWE })=\exp \left(\mathrm{c} \cdot \frac{\lg q}{\lg ^{2} \alpha} \lg \left(\frac{n \lg q}{\lg ^{2} \alpha}\right) \cdot n\right)
$$

where c is the constant in the exponent of SVP complexity, i.e., $T((\mathrm{SVP}))^{2^{c \beta}}$.
This complexity is obtained by solving for β

$$
2^{\frac{m}{\beta} \log \beta}=\frac{q^{1-n / m}}{\alpha q}
$$

and choosing $m=\Omega(n)$ that minimizes the solution.

References

- [BDGL16] A. Becker, L. Ducas, N. Gama, T. Laarhoven. New directions in nearest neighbor searching with applications to lattice sieving.
- [FP83] U. Fincke and M. Pohst. A procedure for determining algebraic integers of given norm.
- [HS07] Guillaume Hanrot and Damien Stehlé. Improved analysis of Kannan's shortest lattice vector algorithm.
- [Kan83] Ravi Kannan. Improved algorithms for integer programming and related lattice problems.
- [Kan87] Ravi Kannan. Minkowski's convex body theorem and integer programming.
- [NV08] P. Nguyen, T. Vidick. Sieve algorithms for the shortest vector problem are practical.
- [S87] Claus-Peter Schnorr. A hierarchy of polynomial time lattice basis reduction algorithms.

