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Agenda

• Today: Lectures

• Tomorrow: Exercises

• Friday: Labs



Labs

• For Lab1 you need to install FPyLLL
https://github.com/fplll/fpylll

• It is available via SageMathCell and CoCalc (select a Jupyter notebook
with a Sage kernel)

• For Lab2 and Lab3 you need Sage on your machine (Lab2 is checked via
automated tests)

• Labs can be solved in teams of max 3 people

• Try to install FPyLLL or play with it in CoCalc

https://github.com/fplll/fpylll


Prize

The fastest team to obtain correct?

solutions/implementations gets an unforgettable prize!

The correctness will be judged by the lecturer



Content of the lectures

1. The shortest vector problem

2. Kannan-Finke-Pohst Enumeration algorithm

3. Sieving algorithm

4. Block Korkine-Zolotarev reduction

5. Solving LWE with BKZ



Part I

The shortest vector problem



A lattice: definition

0

b1

b2

A lattice is the set L = {
∑

i≤n xibi : xi ∈ Z} for some linearly independent bi’s.

For us, bi ∈ Zn and L is full-rank.



Short vectors in L

0

b1

b2

v

The Shortest Vector Problem (SVP) asks to find non-zero v of minimal Euclidean length.

We do not know ||v|| in general, but for any n-rank L:

||vshortest|| ≤
√
n · det(L)1/n (Minkowski’s bound)



Hardness of SVP (small-order terms are omitted)

||vshortest|| ≤
√
n · det(L)1/n

Approximate SVP asks to find vshort:

||vshort|| ≤ γ ·
√
n · det(L)1/n

γ

TimeNP-hard
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Practical Algorithms for SVP

• Enumeration

Time = 2((1/2e)+o(1))n log n Memory = poly(n)

X Lots of improvements for the o(n log n)-term
X (Somewhat) easy to parallelize

• Sieving (Provable/Heuristic)

Time = 2(2.465+o(1))n Memory = 2(1.325+o(1))n

Time = 2(0.292+o(1))n Memory = 2(0.2075+o(1))n

X Big o(n)-factors
X Parallelization is painful
X Time-memory trade-offs exist
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Part II

Kannan-Finke-Pohst Enumeration algorithm



Enumeration algorithm for SVP: main idea

Idea: enumerate all lattice vector within a ball of certain radius k.

1. INPUT: basis B = QR, R ∈ Rn×n – R-factor

2. Set k = ‖b1‖ – a bound
3. Let x ∈ Zn be the coefficient vector of b = Bx. Then

‖Bx‖2 = ‖Rx‖2 = ‖

(
n∑

i=1

r1,ixi,
n∑

i=2

r2,ixi, . . . , rn,nxn

)
‖2 =

n∑

j=1


∑

i≥j
rj,ixi




2

.

We are going to enumerate xi’s for i = n, . . . , 1, keeping the value
∑n

j=1

(∑
i≥j rj,ixi

)2
bounded.
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Enumeration algorithm for SVP

xn

xn

xn−1

xn

xn−1

xn−2

xn

xn−1

xn−2

...
...

...

x1

1. Take all xn ∈ Z s.t. |xn| < k
rn,n

.

2. Fix xn. Take all xn−1 ∈ Z s.t.∣∣∣xn−1 +
rn−1,n

rn−1,n−1
xn

∣∣∣ <
(
k2−(rn,nxn)2
rn−1,n−1

)1/2

3. For fixed xn, xn−1, take all ‘legitimate’ xn−2 ∈ Z

4. Continue all the way to x1’s.
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Complexity

Theorem

The size of the enumeration tree of the above algorithm that receives on input an
LLL-reduced basis B of an n-dimensional lattice is 2(n

2). It can be traversed using
poly(n) memory.

A proof to be shown in TD.

One can tweak the algorithm by making the smallest ri,i’s larger. This gives the

enumeration tree to the size 2
n logn

2e
+o(n), [Kan83,HanSte07]



Part III

Sieving

https://sites.google.com/a/x.bestledlights.cf/a223/1-32772214555



Basic 2-Sieve (Nguyen-Vidick sieve)
Main idea in all sieving algorithms: saturate space with enough lattice vectors so that

their sums give short(er) vectors

L L=

L′
x1 ± x2

||x1 ± x2||
is small

L′=

...
poly(n)

0
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Basic 2-Sieve (Nguyen-Vidick sieve)
Main idea in all sieving algorithms: saturate space with enough lattice vectors so that

their sums give short(er) vectors

L L=
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L′=

...
poly(n)

0

|L| =

(√
3

4

)−n
= 20.2075n

T (2-Sieve) = |L|2 = 20.415n



SVP: conclusions

• Best known SVP algorithm require at least exponential (in lattice dimension) time

• We do not know how to use the additional structure to significantly speed up
SVP algorithms for algebraic lattices

Open questions

• SVP in `∞ norm, algebraic SVP
• Precise complexity of SVP taking into account memory costs
• Quantum speed ups for SVP/LWE/SIS?



Part IV

Block Korkine-Zolotarev (BKZ) algorithm

γ

TimeNP-hard

2log1−ε n

2c·n or 2c·n logn

poly(n)
(LWE/SIS)

2β, BKZ

2
n
β log β

poly(n), LLL

2
n log log n

log n



Small improvement at a time

• We never call an SVP oracle on an non-preprocessed basis

• Having a “better quality” basis of L is beneficial for most (all?) algorithms

• We try to gradually improve the “quality” of a basis

Quality - length of Gram-Schmidt vectors



Projected lattice
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b1 = b?1
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?
2

L2:2

· b1, . . . ,bn – basis of L

· L1:j is the lattice spanned by b1, . . . ,bj· L1:j is the lattice spanned by b1, . . . ,bj .
· b?i is the projection of bi on L⊥1:i−1. (GSO)· b?i is the projection of bi on L⊥1:i−1 (GSO)
· Li:j is the orthogonal projection of L1:j on L⊥1:i−1.
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BKZ (simplified)

Notation: L[` ; r] - orthogonal projection of L1:r on L⊥1:`−1

Input: B = (bi), β

for k = 2 . . . n− 1 do
b ← SVP(L[k ; min{k+β−1,n}])

end for
if b is “short enough” then

Insert b into B
Remove lin. dependencies

end if


b1 b2 b3 ... bβ bβ+1 ... bn




• BKZ runs this FOR-loop while there has been a change in the basis
• one run of this FOR-loop is called a tour
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BKZ: Output Quality and Runtime

• The running time of the algorithm is dominated by the SVP calls if we
bound the number of tours by poly(n).

• This leads to the complexity 2O(β) when sieving is used for SVP and
2O(β log β). Question: memory?

• The approximation factor achieved by BKZ is (see TD):

‖b1‖ ≤ β
n−1
β−1λ1(L).



Time to show the demo...

TODO

TODO


Part V

Solving LWE with BKZ



LWE is BDD

Am

n

, A

s

+

e

mod q
find

s

or

e

• A defines the Construction-A lattice

Lq(A) = AZnq + qZm

• W.h.p., Lq(A) is of dim. m and det(Lq(A)) = qm−n.

• As+ e mod q is a point near Lq(A) at distance Θ(
√
mαq)

• (A,As+ e) is a BDD instance on Lq(A) with γ = q1−n/m

αq



How do we solve BDD? Use an approxSVP algorithm! Kannan’s Embedding

For a BDD instance (L, t), where B is a basis of L, and c is a constant, let

B′ =

[
B t
0 c

]

• Columns of B′ are linearly independent
• Let Bx be the solution
• For “properly” chosen c and t - sufficiently close to L,

[
B t
0 c

]
·
[
x
−1

]
=

[
Bx− t
−c

]

– is the shortest vector in L(B′) (much shorter than any other v ∈ L(B′)
non-parallel to it).



Kannan’s embedding in pictures
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Hardness of LWE

γ

Time2c·n

poly(n)

2c·β, BKZ

2
n
β log β

poly(n), LLL

2n
For LWE

parameters (n,m, q, α), γ = q1−n/m

αq

T (LWE) = exp

(
c · lg q

lg2 α
lg
(n lg q

lg2 α

)
· n
)
,

where c is the constant in the exponent of SVP complexity, i.e., T ((SVP))2
cβ
.

This complexity is obtained by solving for β

2
m
β

log β
=
q1−n/m

αq

and choosing m = Ω(n) that minimizes the solution.
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