Tutorial on Enumeration and BKZ algorithms

1 Enumeration

1. Prove that the size of the enumeration tree in the algorithm described in the class is of order $2^{\mathcal{O}\left(n^{2}\right)}$ when given on input an LLL-reduced basis.
Use the facts that for an LLL-reduced bases the following holds:
2. $\frac{r_{1,1}}{r_{i, i}}<\alpha^{i-1}$, where you can take $\alpha=2$ (it is the upper bound on α);
3. $r_{1,1}=\left\|\mathbf{b}_{1}\right\| \leq \alpha^{\frac{n-1}{2}}(\operatorname{det} L)^{1 / n}$.

2 BKZ

Let B be a basis given on input to the BKZ algorithm and let $B_{[i, j]}$ for $i<j$ be the (projected) basis formed by the basis vectors $\mathbf{b}_{i}, \ldots \mathbf{b}_{j}$ projected orthogonally to the first $i-1$ basis vectors.

1. What is the memory complexity of the BKZ algorithm described in class?
2. Apply Minkowski theorem to the projected lattice $B_{[i, i+\beta-1]}$ to obtain an upper bound on $\left\|\tilde{\mathbf{b}}_{i}\right\|$. Conclude that

$$
\begin{equation*}
\left\|\tilde{\mathbf{b}}_{i}\right\|^{\beta} \leq \beta^{\beta / 2} \prod_{j=i}^{i+\beta-1}\left\|\tilde{\mathbf{b}}_{j}\right\| \tag{1}
\end{equation*}
$$

3. With the obtained upper bounds for all $1 \leq i \leq n-\beta+1$'s, show that

$$
\begin{equation*}
\left\|\tilde{\mathbf{b}}_{1}\right\|^{\beta-1} \cdot\left\|\tilde{\mathbf{b}}_{2}\right\|^{\beta-2} \cdot \ldots \cdot\left\|\tilde{\mathbf{b}}_{\beta-1}\right\| \leq \beta^{\frac{\beta(n-\beta+1)}{2}}\left\|\tilde{\mathbf{b}}_{n-\beta+2}\right\|^{\beta-1}\left\|\tilde{\mathbf{b}}_{n-\beta+3}\right\|^{\beta-2} \cdot \ldots \cdot\left\|\tilde{\mathbf{b}}_{n}\right\| \tag{2}
\end{equation*}
$$

In order to do that, apply Inequality (1) to $\prod_{i=1}^{n-\beta+1}\left\|\tilde{\mathbf{b}}_{i}\right\|^{\beta}$.
4. Using the fact that not only $B_{[1, \beta]}$ is SVP reduced, but also $B_{[1, i]}$ for $i \leq \beta$ are SVP reduced (think why this is true), conclude that (compare with Inequality (1)):

$$
\begin{equation*}
\left\|\tilde{\mathbf{b}}_{1}\right\|^{i} \leq i^{i / 2} \prod_{j=1}^{i}\left\|\tilde{\mathbf{b}}_{j}\right\| \quad \forall i \leq \beta \tag{3}
\end{equation*}
$$

5. Multiply Inequalities (3) for $1 \leq i \leq \beta-1$ and use Inequality (2) to obtain

$$
\begin{equation*}
\left\|\tilde{\mathbf{b}}_{1}\right\|^{\frac{\beta(\beta-1)}{2}} \leq \beta^{\frac{\beta(n-1)}{2}} \cdot\left\|\tilde{\mathbf{b}}_{n-\beta+2}\right\|^{\beta-1}\left\|\tilde{\mathbf{b}}_{n-\beta+3}\right\|^{\beta-2} \cdot \ldots \cdot\left\|\tilde{\mathbf{b}}_{n}\right\| \tag{4}
\end{equation*}
$$

6. Assume that there exist a shortest vector $\mathbf{v}_{\text {shortest }}$ whose projection orthogonal to the first $n-1$ basis vectors is non-zero (otherwise, if all shortest vector project to zero onto the span of $\tilde{\mathbf{b}}_{n}$, then we know that all of them live in a lattice of dimension at most $n-1$ and we can remove \mathbf{b}_{n}).
This implies that $\lambda_{1}=\left\|\mathbf{v}_{\text {shortest }}\right\| \geq\left\|\tilde{\mathbf{b}}_{i}\right\|$ for $n-\beta+2 \leq i \leq n$ (think why). Plugging this inequality into the right-hand side of Inequality (4) conclude that

$$
\left\|\mathbf{b}_{1}\right\| \leq \beta^{\frac{n-1}{\beta-1}} \lambda_{1}
$$

