Lower bounds on lattice sieving
and information set decoding

Elena Kirshanova'>2, Thijs Laarhoven®

! Immanuel Kant Baltic Federal University, Kaliningrad, Russia
2 Horst Gortz Institute for IT-Security, Ruhr University Bochum
elenakirshanova@gmail.com
3 Eindhoven University of Technology, Eindhoven, The Netherlands
mail@thijs.com

Abstract. In two of the main areas of post-quantum cryptography,
based on lattices and codes, nearest neighbor techniques have been used
to speed up state-of-the-art cryptanalytic algorithms, and to obtain the
lowest asymptotic cost estimates to date [May—Ozerov, Eurocrypt’15;
Becker-Ducas—Gama—Laarhoven, SODA’16]. These upper bounds are
useful for assessing the security of cryptosystems against known attacks,
but to guarantee long-term security one would like to have closely match-
ing lower bounds, showing that improvements on the algorithmic side
will not drastically reduce the security in the future. As existing lower
bounds from the nearest neighbor literature do not apply to the nearest
neighbor problems appearing in this context, one might wonder whether
further speedups to these cryptanalytic algorithms can still be found by
only improving the nearest neighbor subroutines.

We derive new lower bounds on the costs of solving the nearest neigh-
bor search problems appearing in these cryptanalytic settings. For the
Euclidean metric we show that for random data sets on the sphere, the
locality-sensitive filtering approach of [Becker-Ducas—Gama—Laarhoven,
SODA 2016] using spherical caps is optimal, and hence within a broad
class of lattice sieving algorithms covering almost all approaches to date,
their asymptotic time complexity of 2°-292¢+°(d) ig optimal. Similar con-
ditional optimality results apply to lattice sieving variants, such as the
20-265d+0(d) complexity for quantum sieving [Laarhoven, PhD thesis 2016]
and previously derived complexity estimates for tuple sieving [Herold—
Kirshanova-Laarhoven, PKC 2018]. For the Hamming metric we derive
new lower bounds for nearest neighbor searching which almost match the
best upper bounds from the literature [May—Ozerov, Eurocrypt 2015]. As
a consequence we derive conditional lower bounds on decoding attacks,
showing that also here one should search for improvements elsewhere to
significantly undermine security estimates from the literature.

Keywords: nearest neighbor searching - locality-sensitive hashing - lat-
tice sieving - information set decoding - lower bounds

elenakirshanova@gmail.com
mail@thijs.com

1 Introduction

Post-quantum cryptography. After Shor’s breakthrough work in the 90s [Sho94],
showing that current solutions in public-key cryptography are vulnerable to
quantum attacks, many researchers have shifted their attention towards devel-
oping new, quantum-safe alternatives. Within the field of post-quantum cryp-
tography, arguably two subfields stand out: lattice-based cryptography, offering
efficient, small, and versatile solutions [Reg05/Regl0Gen09I/GGH13] and rela-
tively strong security guarantees [ADITIMRO7ISSTX09IILPR10]; and code-based
cryptography, relying on long-studied problems from coding theory, dating back
as far as RSA [McET78/RSATE|, and having remained unbroken ever since [Lan20].
In both these fields, it is crucial to obtain a good understanding of the true hard-
ness of the underlying hard problems; both by trying to find new techniques that
may lead to faster algorithms, and by studying what are the limits of known al-
gorithms, when using algorithmic techniques we are currently aware of.

Hardness estimates for lattices. In the field of lattice-based cryptography, cur-
rently the fastest known approach for solving hard lattice problems is commonly
referred to as lattice sieving. Theoretically, the fastest sieving algorithms for
solving e.g. the shortest vector problem (SVP) on random d-dimensional lat-
tices run in time (3/2)%/2+0(d) ~ 20-292d+o(d) [BHGLI6] under plausible heuristic
assumptions about random latticesEIIn practice all recent record-breaking com-
putations on random lattices were done with sieving as well [svp20JADH™19].
Accurately estimating the true cost of lattice sieving is therefore essential for
choosing parameters for lattice-based cryptographic primitives. As the constant
%logg(%) ~ 0.292 in the exponent has not been improved for several years now
(with many improvements happening between 2008 and 2016), one might wonder
whether this constant is optimal, and if one can confidently use it as an asymp-
totic lower bound on the cost of any algorithm trying to break the underlying
lattice problem.

Hardness estimates for decoding. In the context of code-based cryptography,
the most important algorithms to solve the problem of decoding random binary
codes are information set decoding (ISD) algorithms. A random binary code of
length d asymptotically has a minimum distance A of the order \ = @(d)ﬂ In
this regime all known ISD algorithms have a single-exponential running time
9cd+o(d) where the constant ¢ has been improved over the last 60 years from
¢ = 0.121 [Pra62] through a series of works [Ste8IMMTIIBIMMI2ZIMO15] to
the current best leading constant ¢ = 0.0885 [BM18]. These runtimes hold for

4 The literature on lattice algorithms is divided into two classes: algorithms
with provable guarantees on the worst-case complexity for any input lat-
tice [PS09IMV10aJADRST5]; and algorithms making some heuristic assumptions
about the “behavior” of random lattices, to obtain tighter average-case complex-
ity estimates [NVOSIGNRIOIMVI0blLaal5alANSS1S].

5 We choose d to denote the length of the code rather than its minimum distance here,
to be consistent with lattice and near neighbor literature.

average-case instances and are provable. The recent improvements in ISD come
from a combination of various techniques, so it is important to pin down which
techniques are already optimal and which should be further explored to see if
the current best result from [BMI8| can be improved upon.

Note that in this paper, we do not consider the so-called sparse error regime in
decoding, i.e., when the error weight is promised to be o(d). The aforementioned
improvements for ISD do not hold in this regime, and the asymptotically fastest
known algorithm for the sparse case is due to Prange’s [Pra62].

Lower bounds for cryptanalytic algorithms. Both in the context of lattice al-
gorithms and decoding random binary codes, most work has focused on upper
bounds, i.e. constructing algorithms solving these problems as efficiently as pos-
sible. However, for applications in cryptography we are equally interested in
(tight) lower bounds, stating that any attacker that tries to break the scheme
by solving these underlying hard problems needs to spend at least this amount
of time to find a solution. Any such lower bound would clearly be conditional on
the approach used to solve the problem, but even such conditional lower bounds
may already be valuable for choosing parameters in a more conservative manner
than optimistically assuming that the current best algorithms are still the best
algorithms an attacker can use in 20 years. Unfortunately not much is known
about lower bounds in either area, with e.g. [ANSSI§| obtaining lower bounds
on lattice enumeration.

Nearest neighbor subroutines. Both in lattice sieving and in decoding, an impor-
tant subroutine in the state-of-the-art algorithms for solving these problems is to
solve a nearest neighbor problem in the ¢; and ¢>-norms: given a large database
of uniformly random vectors, store it in a convenient data structure such that,
when given a random query vector, we can efficiently extract nearby vectors (un-
der the corresponding metric) from the database. These relations were explicitly
established in [Laal5alMOT5], and especially in lattice sieving many subsequent
improvements were directly related to only improving the nearest neighbor sub-
routine [BGJ15ILAWISIBLIGIBDGLI16]. As a first step towards finding tight
lower bounds on the overall decoding algorithms, we aim at obtaining lower
bounds on the nearest neighbor subroutines, so that we can rule out further
improvements which only target the nearest neighbor routine.

Nearest neighbor lower bounds. For the applications of interest in this paper (lat-
tice sieving and decoding algorithms), the nearest neighbor methods that have
worked best to date are hashing—based solutions, for which lower bounds have
previously been studied in e.g. [MNPO7JOWZ14|Chrl7]. These lower bounds
were mostly in a slightly different model than the models which naturally ap-
pear in cryptanalysis, and it is therefore unclear whether similar lower bounds
apply in the context of cryptography, and whether the best nearest neighbor
methods in these other models must also translate to the best methods for the
problems of interest in cryptography.

On the strict inequivalence between different models. For the last question, we
can explicitly derive a counterexample, showing that a method which is asymp-
totically optimal in one setting is not necessarily optimal in the other. Namely, for
the often-considered sparse regime, cross-polytope hashing is known to be asymp-
totically optimal [TTOTJAIL™15], but when applied to lattice sieving it leads to
a suboptimal time complexity of 20-298d+0(d) " compared to the 20-292d+0(d) ok
tained via the spherical filters of [BDGLI16]. In other words: optimal solutions in
other models may be suboptimal in our model, and lower bounds may not carry
over to our setting either.

1.1 Contributions

After covering the preliminaries (Section, and explicitly describing the nearest
neighbor search model considered in this paper and how it differs from other
models commonly considered in the nearest neighbor literature (Section , our
main contributions are covered in Sections @7

Nearest neighbor searching on the Euclidean sphere (Section . For the problem
of finding nearest neighbors in data sets uniformly distributed on the sphere, we
prove that the best partitioning and filtering approaches — main subroutines in
the hash-based Near neighbor searching — must necessarily be based on spherical
caps. This shows that the spherical filters introduced in [BDGLI6] and further
analyzed in [ALRW17|Chr17] are optimal not only in the sparse regime, but also
in the dense regime. Note that this result is even stronger than previous opti-
mality results [AINRTAJAILT15JAT.RWTT], as there are no hidden order terms
in the statement that spherical caps are optimal for shaping hash regions.

Application to lattice sieving and lattice-based cryptography (Section @) As a
direct application of the above result, we prove that within the framework of
running a “pairwise” lattice sieve with some form of hash-based nearest neighbor
search (a technique inside the sieves is described in e.g., [NV08/Laal5alBDGL16]),
the lattice sieve of Becker-Ducas-Gama-Laarhoven [BDGL16] is optimal, and
the associated asymptotic time complexity 20-2924+0(@) i5 the best possible. Sim-
ilar optimality results extend to the tuple sieving results of Herold—Kirshanova—
Laarhoven [HKLIS]|, the pairwise sieve with quantum speedups [Laal6], and
applications to closest vector problems [DLvW20].

Nearest neighbor searching for the Hamming distance (Section @ Moving from
{5 to £1 norm, we show that spherical caps in Hamming space are optimal in
the sparse regime and almost match the lower bound in the dense regime. We
point to the source of the small discrepancy between our lower bound and what
is achievable by spherical caps.

Application to decoding and code-based cryptography (Section @ Similar to lat-
tices, our lower bound for nearest neighbor searching on the Hamming cube

suggests that trying to improve only the nearest neighbor subroutine in infor-
mation set decoding algorithms will not result in a noticeable asymptotic gain.
For example, trying to replace a random code, which is used to construct spher-
ical caps, with another code will not improve the overall algorithm.

However, the situation differs from lattices in the fact that near neighbor
search is not necessarily the dominant subroutine and its complexity can be
rebalanced with other combinatorial steps. This way, Both-May [BMI18] were
able to improve over [MO15|] using the near neighbor routine differently. Thus
one should interpret our lower bound as an indication that any faster algorithm
for decoding will necessarily require a novel ideal of how (if at all) use near
neighbor search.

2 Preliminaries

2.1 Notation

We write (M,d) for a metric space, where M is the underlying set and d :
M x M — R is the distance function (metric) associated to this set. We write
1{E} for the indicator function, which is 1 if event E holds and 0 otherwise. For
random variables X sampled uniformly from a set .S, we may write X ~ S. We
denote vectors (lowercase) and matrices (uppercase) in boldface. We write || - ||,
for the ¢,-norm, and in this work we will be using both the ¢; and fs-norms.
Throughout, d will always refer to the dimension of the space.

We denote the Euclidean sphere in d dimensions by S¢~1 = {z € R? : ||z|| =
1} € R%. On this sphere we will make use of the uniform surface measure o which
is normalized such that o(S¢~1) = 1. We write (-,) for standard dot products.

We denote the Hamming cube in d dimensions by {0,1}¢. We define the
binary entropy function for z € [0,1] as H(z) = —zlog, z—(1—2)log,(1—x). For
asymptotic results on the Hamming cube, we shall be using the approximation
for the binomial coefficient (Ojid) ~ 2H(2)d which holds for constant a € (0,1)
and large d.

2.2 Lattices

A full-rank lattice £(B) is a discrete additive subgroup of R% generated by the
columns of a matrix B € R¥™ (with polynomially-sized entries). Various hard
lattice problems have been studied over time, with the shortest and closest vector
problems being the classical hard problems. We state the shortest vector problem
below, as efficient algorithms for this (exact) problem are often a key ingredient
for the best cryptanalytic attacks for lattice-based cryptosystems. For simplicity,
one may assume that the rank m below is equal to d.

Definition 1 (The shortest lattice vector problem). Let d,m be positive
integers, and suppose we are given a basis B € RX™ generating a lattice £ =
{Bz:z €Z™} CR Find a vector s € L satisfying ||s|2 = minye s\ (oy [|V]]2-

We express complexities for algorithms for solving lattice problems in terms of
their main security parameter d, i.e. in the form 2¢9t°(@ for a constant c.

2.3 Codes

We refer to a binary linear code C as a [d, k, \]-code, with d being the dimension,
k the rank of the code, and A the minimum distance. While the shortest lattice
vector problem is one of the central hard problems on lattices, upon which the
security of lattice-based cryptography relies, the following problem is crucial in
understanding the security of code-based cryptosystems.

Definition 2 (The information set decoding problem). Let d, k, A be pos-
itive integers, and suppose we are given a parity check matric H € Féd_k)xcl and
a syndrome vector s € Fgfk satisfying s = He for some e € FJ with Hamming

weight w := |le||1 < . Find the error vector e.

In the analysis of information set decoding algorithms, it is common to relate the
parameter w (the error weight) to the rank of the code k and to the dimension
d. To do so, we make use of the Gilbert—Varshamov bound which states that
g =1-H (%) as d — oo. This gives us a way to express w as a function of d
and k. Then for any chosen k € (0, 1), the runtime of an information set decoding
algorithm simplifies to the form 2¢9t°(@) for some constant c. We are interested

in the setting when w = ©(d), the so-called dense regime.

3 Nearest neighbor model

3.1 Closest pairs problem

For the applications in post-quantum cryptanalysis, which are ultimately the
main objective of this study, we are commonly interested in solving the following
general closest pairs problem: finding nearby pairs of vectors in a given list of
vectors living in some bounded metric space.

Definition 3 (Closest pairs problem). Let (M, d) be a bounded metric space,
and let r > 0 be a given target distance. Let L C M be a finite subset of M, with
elements drawn uniformly at random from M. Find almost alﬁ pairs X,y € L
satisfying d(x,y) <.

In the above definition, we assume the list L follows a uniform distribution over
the underlying metric space M in the applications for the Euclidean sphere and
Hamming cube it will be clear what this uniform distribution looks like. This
is different from various other models in the nearest neighbor literature, where

5 The term “almost all” can intuitively be interpreted as finding at least 90% of all such
pairs (or, if only one such pair exists, making sure it is found with probability at least
0.90). Although this minimum success rate is not a hard limit, and the high-level
ideas would still work if only e.g. 50% or 10% of all pairs are found, the complexities
of these underlying algorithms are usually inversely proportional to the ratio of good
pairs that are found in the closest pairs subroutine: finding a smaller ratio of good
pairs commonly means having to use bigger lists, which in turn translates to a higher
space complexity and a higher overall runtime due to having to search bigger lists.

one might aim to find a solution to the closest pairs problem which works even
for worst-case data sets, albeit with a certain approximation factor. In cryptana-
lytic applications, these uniform distributions appear naturally, and average-case
analyses give a better idea of the overall performance than worst-case analyses.
A common approach for solving variants of the closest pairs problem is by

first building, and then repeatedly querying a well-chosen nearest neighbor data
structure:

1. Initialize a nearest neighbor data structure D;

2. Populate this data structure D with all elements x € L;

3. For each x € L, query the data structure D to find nearby y € L, x # vy,

with d(x,y) <.

Note that within this framework, we need to index the list L in the data struc-
ture D (corresponding to |L| insertions), and we need to run |L| queries on
the list L to find almost all closest pairs (corresponding to |L| queries). While
there is often a trade-off between the insertion and query complexities for such
nearest neighbor data structures, this outline naturally tells us that to optimize
the overall time complexity for solving the closest pairs problem, we should bal-
ance the insertion and query complexities. If insertions and queries can both
be done in time |L|?T°() for some p € (0, 1), then the above algorithm would
solve the closest pairs problem in time and memory |L|1+”+°(1). There exists
memory-efficient version of the above approach that uses only \L|1+°(1) mem-
ory [BGJ15/BDGLI6] that consists in building D “on-the-fly”. Each bucket is
processed once constructed and is never stored. Such a modification improves
memory but not the runtime of the algorithm, hence, the lower bound we obtain
applies.

3.2 Nearest neighbor problem

As outlined above, the problem of finding all close pairs in a long list can be
solved via the nearest neighbor problem.

Definition 4 (Nearest neighbor problem). Let (M,d) be a bounded metric
space, and let v > 0 be a given target distance. Let L C M be a finite subset of
M, with elements drawn uniformly at random from M. Preprocess L in a data
structure such that, when later given a uniformly random query x € M, we can
efficiently find almost all vectors y € L satisfying d(x,y) < r.

Similar to the closest pairs problem, we assume that the data set is drawn
uniformly at random from the space M, which we therefore assume is bounded.
We also assume that the query vector x € M is drawn uniformly at random
from M, which closely matches the nearest neighbor subroutine that needs to
be solved to solve the closest pairs problem defined earlier.

3.3 Hash-based nearest neighbor searching

While many solutions have been proposed for solving such nearest neighbor prob-
lems, the most promising approaches for high-dimensional problem instances all

Algorithm 3.1 Hash-based nearest neighbor searching

SCHEME PARAMETERS:
e ¢t € N — the number of hash regions
e r € R — target distance
e Uy,...,U; C M — hash regions for insertions
® Q1,...,Q¢ C M — hash regions for queries

1: function INSERT(y) > Add y to all relevant buckets
2: for all ¢ € [t] with y € U; do

3: B+ B; U {y}

4: function QUERY (x) > Find near neighbors y € L with d(x,y) <r
5: C+—o

6: for all ¢ € [t] with x € Q; do

T for all y € B; with d(x,y) <r do

8: C+ Cu{y}

9: return C

10: function PREPROCESS(L) > Store all y € L in the data structure

11: Bi,...,Bi+ @
12: for ally € L do

13: INSERT(y)

14: function CLosesTPAIRS(L) > Find close pairs {x,y} € L with d(x,y) <r
15: PREPROCESS(L)

16: P+—o

17: for all x € L do

18: P + P U ({x} x QUERY(x))

19: return P

seem to be based around the idea of (randomized) divide and conguer: divide the
space in regions, and solve the closest pairs problem (nearest neighbor problem)
in each region separately. By using well-chosen hash regions, and by using many
rerandomizations to account for unfortunate separations of nearby vectors, we
hope that each pair of nearby vectors will eventually end up in the same hash
region at least once.

Formally, with the added generalization that combinations of these hash re-
gions do not necessarily have to form a partition of the space [BDGLI6JALRW17],
this leads to the following definition of hash-based nearest neighbor searching.

Definition 5 (Hash-based nearest neighbor searching). Let the data set
L C M and target radius r > 0 be given. To solve the nearest neighbor problem,
hash-based nearest neighbor searching preprocesses the data set L and processes
queries x as outlined in Algorithm [3-1]

Observe that the pseudocode in Algorithm is not quite precise on how we
recover the indices ¢ € [t] with either y € U; (for insertions) or x € @, (for
queries). A naive linear search would take time ¢, by checking for each ¢ if the
condition is satisfied. If there is some additional structure in these hash regions

U; and @;, then ideally we may hope for an algorithm finding the set Y = {i €
[t] : y € U;} in time O(|Y]), and the set X = {i € [t] : x € Q;} in time O(|X]).
Throughout we will often assume the existence of an oracle O which achieves
these optimal time complexities, as the technicalities for implementing this (as
in e.g. [BDGL1G/ALRW1T]) are not necessary for understanding our results, and
may distract the reader from the essence of our contributions.

At the end of the query phase, we search the set of candidates C' = U;.xc, Bi
for potential nearest neighbors to x. Ideally we would like this set C' to only
contain nearby vectors in the data set, and not any other vectors. In other
words, ideally we would like to guarantee that for random vectors y € L the
event {x € Q;,y € U,} is rare, while for nearby vectors y € L the probability of
{x € Q;,y € U;} happening is large. Therefore, the following quantities are of
interest, which capture the probabilities of hash collisions for nearby and random
vectors.

Definition 6 (Collision probabilities). Given a hash-based nearest neighbor
scheme, with hash regions Uy, ..., U; and @1, ..., Q¢, and a target distance r > 0,
we define the following quantities:

t
p1 = Zpl,m P1i = stNrM(X € Qiy € Ui | d(x,y) <r), (1)
i=1 ’
t
P2 = 2192’“ P2 = x,sI'DNrM(X €Qiy €U). (2)

To obtain the best performance for a hash-based scheme, we wish to maximize
p1 and minimize ps. An often considered quantity capturing both these goals is
p :=1np;/Inps. Maximizing p; and minimizing p, means making the exponent
p as small as possible, and when the parameters of the scheme are chosen to
balance insertion and query costs (and one assumes the existence of an efficient
oracle for finding relevant buckets), both these costs can be made equal to O(n”).
In general however one can obtain arbitrary trade-offs between the costs of this
approach, as described in e.g. [Laal5SbiBDGLIGIALRW17]. The shapes of the
hash buckets may vary, but intuitively the relative sizes of @; and U; control
the trade-off between the query time on the one hand, and the insertion time,
preprocessing time, and memory complexity on the other hand as follows:

— For Q; C U;, we are more selective with buckets in the query phase, often
leading to better query times but worse insertion and preprocessing com-
plexities, as we will need more buckets to guarantee we still find the nearest
neighbors in the few buckets we query for near neighbors.

— For Q; D U;, we are less selective in the query phase, and overall we need a
smaller number of buckets ¢ (less memory, better preprocessing time) to make
sure we find the nearest neighbor in one of the queried buckets. However, as
we also consider “bad quality” hash buckets, we will commonly spend more
time in the query phase. (Choosing Q; D U; is intuitively similar to probing
in locality-sensitive hashing literature [Pan0GJAIL"15].)

— For Q; = U;, we balance the query and insertion complexities. This is some-
times called the balanced regime, and most lower bounds from the literature
on p apply to this regime.

Usually it does not make sense to choose regions U; and @; for which neither
U; C Q; nor Q; C U;; we want x and y to be as similar as possible, so if we
know y € U; we will want to compare x to y only if x lies in a similar region in
space.

3.4 Assumptions about the data set

While most of the above model is still very much in line with most of the existing
(hash-based) nearest neighbor literature, and lower bounds that have previously
appeared, there are some subtle differences we make about the data set, which
warrant the new search for lower bounds in this paper. We will describe the two
key properties below, which have to do with two assumptions about the data
set: the distribution of points, and the size of the data set n relative to d.

The distribution of the data set. As described in the nearest neighbor definitions
above, in this paper we specifically assume that the data set follows a uniform
distribution over the underlying metric space. (Concretely we will consider the
Euclidean sphere and the Hamming cube, for which this uniform distribution is
well-defined.) Most literature on the nearest neighbor problem however makes
no such assumptions, and aims to provide solutions for worst-case data sets. In
practice however it often turns out that these “random data sets” are, in fact,
worst-case data sets for most hash-based solutions [AINRI4JARISJALRWIT].
One may argue that here we are making stronger assumptions about the problem
than in most of the past literature. On the other hand, in most applications the
most natural distribution of points for the data set is uniform, and uniform data
sets are often considered the hardest to deal with anyway. One could therefore
consider this as only a minor additional assumption. Note that without this
additional assumption, we would not be able to strengthen our model compared
to previous work as described in the next paragraph.

The sparsity of data set. Most past work on nearest neighbor searching focused
specifically on the so-called sparse regime, where the number of points n in the
data set scales as n = 2°(9) | or equivalently logn = o(d). For logn < d, i.e. for
extremely sparse data sets, one can always use a dimension reduction step [JL.84]
to obtain logn o d/logd; one can always go from an extremely sparse data set
to a less sparse data set. This is however the limit, and one cannot reduce the
dimensionality to logn o d without losing guarantees on the preservation of
distances between points in the data set. The entire sparse regime can therefore
be reduced by only solving the regime where logn o d/logd, but this leaves
open the regime where logn = 2(d). The latter is exactly the regime of interest
for the cryptanalytic applications in this paper, and unfortunately lower bounds
are specifically tailored to the sparse regime.

10

To summarize: whereas most past work made no assumptions about the
distribution of the data set, it did make assumptions about the sparsity of the
data set. In this paper we make no assumptions about the sparsity of the data set,
but we do specifically assume that the data set follows a uniform distribution.

3.5 Inapplicability of existing lower bounds

Various lower bounds have previously been derived for (hash-based) nearest
neighbor searching in a long series of works [MNPO7/PTWI0JOWZ14|Chr17],
but all of these have focused on the sparse regime, discussed above. As we are
interested in the dense regime of logn = O(d), one might wonder whether ap-
plying the same lower bounds to the dense regime is just a “technicality”, and
if schemes which are known to be asymptotically optimal in the sparse regime
are also optimal in the dense regime.

We can counter this reasoning with an explicit counterexample, showing that
indeed the study in this paper is needed. For the sparse regime and for the
angular distance (or nearest neighbor searching on the sphere; see Section ,
different schemes are known to be optimal:

— The spherical hashing from [AINRI4] and the cross-polytope hashing from
e.g. [TTO9YAIL 15| are both known to be optimal for the sparse regime. They
both achieve the optimal scaling of the query exponent p for the balanced
regime as p ~ 1/(2¢2 —1) for random data sets, when the target distance r is
a factor c less than the average distance on the unit sphere (\/5) Matching
lower bounds are known [AINRI4JARISJARIGIALRW1T] showing their opti-
mality for the sparse regime. When applying these schemes in the context of
lattice sieving, where we substitute the nearest neighbor step by these opti-
mized hashing schemes, the best possible time complexity for solving lattice
problems in dimension d with both these hash-based approaches becomes
20:297...d+o(d) [LAWT5BL16|.

— Later on, spherical filtering was presented in [BDGLI6], and further stud-
ied in [Laal5bJATLRWI7]. Spherical filtering is also known to be optimal
in the sparse regime, again obtaining the optimal scaling of p ~ 1/(2¢? —
1), up to lower order terms. When applying these results to lattice siev-
ing however, again substituting this scheme for the nearest neighbor step
that needs to be done, the time complexity for solving lattice problems be-
comes 20-292---d+o(d) [BDGLI6|. In other words, using this nearest neighbor
scheme leads to a strict asymptotic improvement over the previous results
from [LAWISIBLI6], even though these other results were also relying on a
hash-based scheme which was known to be optimal in the sparse regime.

The essence lies exactly in the fact that all existing lower bounds were derived
specifically for the sparse regime, and do not necessarily carry over to the dense
regime. And as the above situation in lattice sieving shows, indeed asymptot-
ically optimal schemes in the sparse regime may be strictly suboptimal in the
dense regime. This motivates the study of this work: to derive lower bounds for
the dense regime, which do apply to regimes of interest in cryptanalysis (and
potentially in other applications with dense data sets as well).

11

4 Nearest neighbor searching on the Euclidean sphere

For the Euclidean sphere, we instantiate the metric space (M, d) from Section
by the Euclidean metric d(x,y) = [x — y||2_and the unit sphere M = S =
{x € R?: ||x||s = 1}. Throughout Sections we will write || - || = || - ||2 for
the Euclidean norm.

4.1 The Baernstein—Taylor rearrangement inequality

A key ingredient for deriving the optimal hash-based approaches for the Eu-
clidean sphere is the following result of Baernstein—Taylor from the 1970s [BT76].
This inequality is closely related to the Riesz—Sobolev rearrangement inequal-
ity [Rie30], but instantiated on the unit sphere rather than the entire real space.
The original statement and its proof can be found in [BT76, Theorem 2]. Below
o denotes the normalized surface measure on S9!, such that o(S%!) = 1.

Lemma 1 (Baernstein—Taylor inequality for S¢~! [BT76, Theorem 2]).
Let f,g: S%1 — R be arbitrary Lebesgue-integrable functions. Let b : [—1,1] —
R be a non-decreasing, bounded, and measurable function. Let f*, g* : S~ - R
be functions satisfying the following conditions:
— [*(z) only depends on the first coordinate z1 of z and is a non-decreasing
function of z1;
— g*(z) only depends on the first coordinate z1 of z and is a non-decreasing
function of z;
— ForallAeR:0({z€S¥1: f*(z) > \}) =o({z€ S¥ 1 : f(z) > \});
— Forall\eR: 0({z €S 1:g*(z) > \}) =c({z€ 891 :g(z) > A\}).
Then:

/ FX)g(¥)h((x,y)) do(x) doly) < / / £ ()g* () h((x, ¥)) do(x) do(y).

Sd—1yxgd—1 Sd—1yg8d—1

4.2 Optimal hash collision probabilities

At first sight it may not be obvious how the above inequality is useful for us. The
following corollary shows that with a proper instantiation of the functions f, g, h
this naturally leads to an upper bound on collision probabilities for regions on
the sphere in the hash-based nearest neighbor framework.

Theorem 1 (Collision probabilities for S9~1). Let Q,U C S%! be arbitrary
subsets of the sphere, and let Cq,Cuy C S~ be spherical caps of the following
form:

Co:={zec8% 21 >a}, withac[-1,1] such that o(Cq)
Cy:={zec8¥':2>8}, with € [-1,1] such that o(Cy)

(@),

o(U).

12

Then, for any v € [—1,1] we have:
Pr [xeQyeU|xy 29<_ Pr [xeCqyelulxy) =1l

x,y~S4= x,y~S1=
Pr [xeQ,yeUl= Pr [x€Cq,y€Cy].
x,ywsm[Q,y € U] stm[Q.y € Cul

Proof. The second equality follows trivially by factoring the joint probability
into two individual probabilities, and noting that the spherical caps Cq, Cyy have
the same volume as the sets Q,U:

Pr 1[XGQ,yEU]:U(Q)-U(U):U(CQ)~J(C'U)= Pr 1[XGCQ,yECU].

x,y~S9= x,y~S4=

The first inequality follows almost directly from the Baernstein—Taylor inequality
with the proper choice of functions. We define the functions f, g, h as:

f)=UxeQ}, gy):=UyeU}, hls):=1{s =7}
Note that, for A € R, the functions f and g satisfy:

1, A <0; 1, A <0
d{f>A)=1{0(Q), 0<A<L o(fg>) =R0(U), 0<A<;
0, 1<\ 0, 1<

For the function f* from Lemma [If we need o({f* > A}) = o({f > A}) to
hold for all A € R, with f* only depending on z; and being non-decreasing in
x1. To satisty f*(z1) > 0 with measure o(Q) and f*(z1) > 0 with measure 1,
it follows that f*(x;) = 0 with measure 1 — o(Q). Similarly f*(z1) = 1 with
measure o(Q). This means that f*(z1) must be a heaviside step function in one
variable z1 € [—1, 1], with an increase from 0 to 1 at the value z1 = « satisfying
o(Q) = oc({z € S¥1 : z; > a}). Defining Cq = {z € S¥! : 21 > a} for the
above «, this translates to 0(Q) = 0(Cg), and together with a similar derivation
for g* we obtain the expressions:

fH(x) :=1{x €Cq}, withCq={z€ 8% ":2 >a} such that o(Q) = 0(Cg);
g*(y):=1{y € Cy}, withCy ={zc S%':2 > f} such that o(U) = ¢(Cy).

Now, with all conditions for Lemmal[I]satisfied, we can instantiate the Baernstein—
Taylor inequality for these functions f, f*, g, ¢*, h. Observing that the integrals
can be interpreted as probabilities, and combining the indicator functions, we
obtain:

Pr [xeQyeU(xy) 2=

X, y~Sa—
H{x € Q,y € U,(x,y) > v} do(x)do(y)
Sd—1xSd—1
< // I{x € Cq,y € Cu,(x,y) > v}do(x)do(y) =
Sd—1xSd—1
PSI: [XeCQ,ycha<Xay>Z’Y]'
X,y~Sd—1

13

Note that the above derivation applies for all v € [—1,1]. Now finally, we can
easily obtain a similar inequality for the conditional probabilities as follows,
where all probabilities are over x,y ~ S%1:

Pr(x U. (x

=PrixeCq,ycCu|(xy)>1].

- Prix € Cq,y € Cu,(x,y) >]
- Pr{(x,y) > 1]

This completes the proof of the first inequality.

The above theorem states that, if we replace the hash regions @@ and U by
spherical caps of equal volume as @ and U, then (i) uncorrelated pairs of vectors
are still equally likely to be found as candidate near neighbors, while (ii) nearby
pairs of vectors are at least as likely (and perhaps more likely) to be considered
as potential near neighbors. So ignoring e.g. the potential decoding overhead or
the cost of membership queries for these different hash regions, this shows that
the optimal choice for the hash regions is to use spherical caps. Note that for
this optimality to hold, it is crucial that Cq,Cy are spherical caps centered at
the same point on the sphere, although the same inequalities hold if both are
centered at a different point v € S9! with v # e.

4.3 Optimal hash-based nearest neighbor searching

The previous result suggests that using spherical caps is optimal, and the follow-
ing result formalizes this statement in the asymptotic setting. Here by “optimal”
we mean that choosing the hash regions U; or Q; of shape different from spherical
caps will not asymptotically improve the performance of Algorithm

Theorem 2 (Spherical caps are optimal for S%~1). Suppose we have access
to an efficient decoding oracle for retrieving relevant hash regions. Then to get
the best asymptotic performance for hash-based nearest neighbor searching, the
following choice of hash regions is asymptotically optimal:
— Choose t € N, and for each i € [t] choose thresholds a;, 8; € [—1,1] and draw
v~ Sdfl;
— Define Q; ={z € S¥ ' : (z,v;) > a;} and U; = {z € S 1 : (z,v;) > Bi}.

Proof. First, observe that with access to an efficient decoding algorithm, the
costs of the hash-based nearest neighbor search are equal for two schemes which
use regions of equal size; the data set and queries are assumed to be uniform, and
therefore the number of hash collisions within each bucket and the number of
buckets to check only depend on their volumes, and not on their shapes. Given
the volumes of the regions, and the number of regions, the costs in terms of
having to compare a query x with random vectors y € L which are not near
neighbors, does not depend on the shapes of the regions. The only thing that
is influenced by the (relative) shapes of the regions is the probability of finding

14

nearby vectors in the list: given a query x ~ 8?1, the probability of finding a
nearby vector y € L with (x,y) > v in at least one of the ¢ potential buckets.

Recall that the hash collision probabilities for nearby vectors can be expressed
in terms of probabilities of inserting and querying the same bucket, for at least
one of the indices i = 1,...,t. Letting E; = {x € Q;,y € U; | (x,y) > v} denote
the event that for a nearby vector y to the query x, we insert y into bucket U;
and we later query @; for x in the query phase. Then we have:

t

U~

i=1

t

<> PiE] = Pr [xeQiyeU|(xy) 21 (3)
i=1

p1=Pr
— x,y~S4-
=1

The first inequality becomes more of an equality when the events are more
disjoint; this tells us that ideally we should minimize the probabilities that two
events F; and E; happen at the same time, e.g. by carefully spreading out these
hash regions over the unit sphereﬂ Note that asymptotically, as analyzed in
e.g. [BDGLI6Laalbh], we do indeed have Pr [Ule E,} =3 Pr[E]-(1+0(1))
for all common parameter choices, as it is extremely unlikely that multiple events
FE; happen at the same time for random v;. So the right hand side of is
asymptotically equal to p;.

Finally, by Theoremthe right hand side of (3|) is maximized when the shapes
of the regions are spherical caps. So the probability of finding nearby vectors is
maximized when the @; and U; are spherical caps centered around the same
vector v; on the sphere. With the other collision probability ps being invariant
under these replacements of arbitrary regions by equal-volume spherical caps,
and with the decoding costs assumed to be not an issue, this shows that up to
lower order terms, this hash-based scheme is optimal.

All that now remains is choosing the thresholds «; and §;. The following
result shows that all the §;’s should be equal to get the best asymptotic per-
formance, and that their optimal value is determined purely by the list size n.
For the a; we also derive that they should all be equal to the same value a, but
together with ¢ this parameter allows us to obtain trade-offs between the query
and update complexities of the underlying hash-based scheme.

In the following theorem by “optimal” we mean that choosing the spherical
caps U;’s (or Q;’s) of different sizes for different ¢ will not improve the perfor-
mance of Algorithm

Theorem 3 (Equal spherical caps are optimal for S%~1). Suppose we have
access to an efficient decoding oracle for retrieving relevant hash regions. Then
to get the best asymptotic performance for hash-based nearest neighbor searching,
the following choice is asymptotically optimal:

— Choose t € N, choose a € [—1,1] and compute 3 such that o({z € S~! :

" This further illustrates the need for good spherical codes for determining
where to place these vectors v; to obtain the best performance in prac-
tice [ATOGITTOTIAIL ™ 15ILaa20].

15

— For each i € [t] draw v; ~ S471;
— Define Q; ={z € S ':(z,v;) >a} and U; = {z € S : (z,v;) > B}.

Proof. Compared to the optimality result from Theorem [2] we need to prove
that (1) fixing one parameter [, rather than choosing each separately, cannot
decrease the asymptotic performance; and (2) with § fixed, it does not make
sense to use different values a; for the different buckets.

Fixing §; = (. For populating the buckets B;, observe that we do not want
most buckets to be empty (which happens when g; is too large). In that case the
overhead of retrieving these hash buckets will be much larger than the actual
comparisons with potential near neighbors, as the number of buckets is larger
than the number of vectors in these buckets. If many buckets are empty, we would
be better off creating larger buckets, corresponding to larger spherical caps, until
these buckets contain at least a few vectors each, decreasing the decoding cost
and not affecting other costs more than n°"). So we never want to choose f3;
such that o({z € 41 : 2, > 8}) < 1/n.

On the other hand, if we use spherical caps with too small parameters j3;,
then these buckets will contain n®®) vectors each. Note that such a bucket
corresponds to a spherical cap, which can essentially be seen as a sphere of one
dimension less, with a smaller radius, and where again the vectors in this bucket
are uniformly distributed over this lower-dimensional sphere. This is again a
NNS instance on a smaller sphere, and we can do better than to put all n©™)
vectors in one big list and having to query the whole list when we want to
search this region for near neighbors. It cannot be worse to partition this bucket
into smaller buckets, so that we can either choose « so large that the entire
list is queried (if necessary), or we can choose « larger to only query some of
these smaller buckets. So we also do not want to choose [3; too small, such that
o({z€ S% 1z > B}) > 1/n.

In other words, we want each f3; to satisfy o({z € S%! : z; > B}) « 1/n.
Small deviations in individual bucket sizes may not be worse in practice, but
asymptotically we need all 3; to be approximately equal to the [satisfying
o({z €841 2 > B}) =1/n (see [HKLIS|[Appendix A]).

Fixing «a; = a. With all §; fixed to the same value 8, and with all buckets
containing (in expectation) a small number of vectors, the parameters a; now
control when buckets are queried. Note that for a fixed [, all buckets are iden-
tically shaped as a spherical cap of a fixed size, and with the data set being
uniform on the sphere, all buckets are essentially equivalent. For a given query
x however, the distribution of dot products (x,y) for vectors y € B; depends on
(x,v;): if x is almost equal to v;, we have a stronger guarantee that the vectors
in this bucket (which are uniform in a spherical cap centered at y;) are close to
x as well. On the other hand, if (x,v;) is relatively small, then the vectors cen-
tered around v; will on average be further away from x. As each bucket contains
equally many vectors, we therefore want to select only the buckets with the best
potential for near neighbors, i.e. those buckets for which (x,v;) is largest. Sort-
ing the buckets by (x,v;) and only going through the highest-quality buckets is

16

equivalent to selecting a single appropriate parameter o and only checking those
buckets for which (x,v;) > a.

So ultimately, we may set §; = [to one fixed value, determined immediately
by n and d, and fix a; = « to one value which together with ¢ then trades off
the space and query complexities.

Note that the optimal choice of « is not obvious. The free parameters o and ¢
together control the trade-off between the query time complexity and the update
complexity. Concretely we can minimize for the query time by choosing both «
and t to be large (generate a large number of buckets, and only query the buckets
for which v; is almost identical to x), or we can minimize for the update and
space complexities by choosing « and ¢ to be small (using fewer hash buckets,
but being less selective in the query phase and visiting most of these buckets).

Summarizing, the asymptotically optimal scheme (up to order terms) is now
written all the way down up to selecting the best parameters ¢, o, and imple-
menting such an efficient decoding oracle. This problem has previously been
studied in [BDGL16/Laal5bJALRW17], and here we will merely state that the
schemes analyzed in these works are therefore optimal.

Theorem 4 (Spherical filtering is optimal for S~'). The hash-based near
neighbor schemes studied in [Laal5WBDGLIGIALRWI1] are optimal within the
hash-based framework for uniformly random data sets on the sphere.

4.4 Results for dense data sets

Note that [ALRWT7] already claimed optimality of the filtering approach de-
scribed in [BDGLI16JALRW17], by proving matching lower bounds in the sparse
regime. For the dense regime, no lower bounds were previously known, and as
explained in Section this was not just a matter of applying optimal algo-
rithms from the sparse regime to the dense regime and claiming optimality in
the dense regime as well. Our results settle the issue for uniformly random data
sets, showing that spherical caps of specific sizes are indeed optimal.

The resulting optimal complexities for the dense regime can be found in
e.g. [Laal5bl Theorem 2], where the parameters o and ¢ were optimized to obtain
the best performance. We restate these upper bounds below, where based on our
lower bounds we now add that these trade-offs are optimal for the dense regime.

Theorem 5 (Trade-offs for the dense regime). Let 0 € (0,3n), let the
target dot product be (x,y) > cosf, and let the data set consist of n = 20(d)
random points on the unit sphere. Then to obtain asymptotically optimal trade-
offs for the query and update complezities, we should choose u € [cos 6,1/ cos 6]
and set the parameters as:

a=u-V1-n2/4d, B=1—n2/4d.

17

We can then find nearest neighbors on the Euclidean sphere with query and
update exponents:

—d 2\ 14+ u? —2ucosh d _2\ o
A a1 (1-4)),
Pa= Slogn & { " sin? 0 } + 2logn 8 " “
—d —oa\ 1+ u?—2ucosf
w = 1 1—(1— /)— —1.
P 2logn og{ " sin? 0

The resulting algorithm has a query time complexity O(nPQ), an update time
complezity O(nf*), a preprocessing time complexity O(nttra), and a total space
complexity of O(n'*ra). The total number of filters scales as t = O(n'*ra).

While the above formulas are a bit more technical, note that the query and up-
date exponents only involve the input parameters d, n, 6 and the trade-off param-
eter u. Choosing u = 1 leads to a “balanced” trade-off with p, = p,, and e.g. for
the lattice sieving regime of the next section, where = § and n = (4/3)d/2+o(d),
for v = 1 we obtain p, = p, = log(9/8)/log(4/3) with query complexity
n? = (9/8)4?*+°(@) and closest pairs complexity n'*+? = (3/2)%/2+o(d),

5 Application to lattice sieving and lattice-based
cryptography

With the results from Section [4] in mind, showing that the best hash-based
nearest neighbor search technique is what has already been studied in the context
of lattice cryptanalysis, we immediately get conditional optimality results for
various current lattice sieving approaches. These optimality results are all under
the assumption that we are only allowed to make tweaks to the nearest neighbor
subroutine within these algorithms.

5.1 Lattice sieving

The lattice sieving approach introduced by Ajtai-Kumar—Sivakumar [AKS01] is
currently the best known method for solving the shortest vector problem in prac-
tice on random high-dimensional lattices. For a d-dimensional lattice, the time
and memory complexity are both of the order 29(?) compared to a time com-
plexity of 22(41°84) for enumeration-based approaches [KanS3[FPS5IGNRI()].
Given as input an arbitrary basis B of a lattice, sieving algorithms start by
sampling an exponentially long list L of lattice vectors using efficient discrete
Gaussian sampling procedures like [KIe00JGPV0S]. Note that sampling exactly
from a discrete Gaussian is not important; all that matters is that the sampled
points are distinct, and are as short as possible. The points from the list are then
combined to produce new shorter vectors z = x —y where x,y € L. Note that z
is short if and only if x and y are “near neighbors” in space, and this naturally
leads us to using closest pairs algorithms for performing these sieving steps. The
process of sieving is then executed iteratively with the new and shorter vectors

18

added to the list (and longer vectors getting removed from the list), until we
ultimately find a shortest vector in our list.

The complexity of sieving algorithms is determined by the size of the starting
list required for the iterative process to succeed, and by the complexity of finding
short pairwise combinations of vectors in the list to form new short vectors. Note
that by volume arguments over the sphere, if all lattice vectors in the list L have
roughly the same norm, then (i) for a list of size n = |L| < (4/3)%/2T°(@) e
expect the number of nearby pairs x,y € L with | x—y|| < ||x|| to be significantly
less than n, while (ii) for a list of size n = (4/3)%/?%°(@ we do expect the number
of such pairs to be proportional to n. So if we wish to repeat this sieving step
a polynomial number of times and end up with sufficiently many new vectors
each time, we need the input list to be of size n = (4/3)%/2+°(d)_ The closest
pairs subroutine then consists of: given a list of n vectors of roughly equal norms
as input, find all pairs of vectors whose mutual distance is shorter than their
individual norms. This translates to a target angle of 7/3.

The above requirements on the algorithm lead to the following results, where
we know that within the hash-based nearest neighbor framework, the results
from Theorem [5] are optimal. So unless we modify other parts of the algorithm,
or solve the closest pairs problem differently, these complexities are optimal for
the standard pairwise sieving framework.

Theorem 6 (Classical sieve, heuristic). Suppose we use a pairwise sieve
with a hash-based nearest neighbor search subroutine to solve the closest pairs
problem. Then the following time and space complexities of Becker—Ducas—Gama—
Laarhoven [BDGLI16|] are asymptotically optimal:

3\ ¢/2+o(d) 4\ ¥/2+o(d)
T — (2) ~ 90:292d+0(d) S — (3) o 90.208d+0(d)

Note that the space complexity S is determined by the list sizes required by the
sieving, but not by the number of the buckets from the hashing as in Theorem
This is due to the fact that the number of query points in sieving is .S, hence, a
one can use a memory-efficient bucket processing (see end of Section .

Lattice sieving variants. Various variants of lattice sieving have been studied,
aiming to solve slightly different problems or optimizing other parts of the under-
lying algorithm. We will briefly cover three of these variants: (i) quantum siev-
ing [LMvdP15|Laal6lKMPM19], (ii) tuple sieving [BLST6/HKI7Laal 7IHKTIS],
and (iii) sieving for the closest vector problem with preprocessing [Laa21|DLvW20].
Almost these algorithms (exception is the tuple sieve from [BLS16]) use near
neighbor routines. Therefore, our lower bounds apply: if we are only allowed to
replace the nearest neighbor subroutine by some other hash-based nearest neigh-
bor subroutine, then we cannot do better than the above results. Of course, this
does not rule out potential improvements coming from another modifications.

Relevance for lattice-based cryptography. As a take-away for cryptographic appli-
cations, one can view our lower bounds on sieving with nearest neighbor search-

19

ing as a further motivation for most concrete parameter selection methods cur-
rently used in practice, which assume that the leading time complexity exponents
0.292 and 0.265 are the best an attacker can do [BDKT18/BGMLT18/BCD™16].
There is always the possibility that faster algorithms will be found, but if an
attacker uses sieving with some form of nearest neighbor searching, they will not
be able to improve upon these exponents.

The question remains how to estimate concrete costs in e.g. dimension 768
or 1024, as our lower bounds and most asymptotic analyses of upper bounds are
asymptotic: the exponent scales as 0.292d + o(d) for large d (or 0.265d + o(d)
quantumly), but the o(d) may be arbitrarily small or large when d is fixed.
Some past work has looked at trying to estimate the o(d)-term of the best upper
bounds [Sch19/AGPST19].

Observe that when studying concrete attack costs in fixed dimensions d, it is
also necessary to take into account further potential subexponential speedups,
proposed in e.g. [DucI8JADHT19/DLAW2(]. Furthermore it may not be sufficient
to only look at the asymptotically fastest approaches: in a fixed dimension d,
another nearest neighbor method may have less overhead in practice and lead
to better time and space complexities than the spherical filters, which match
our asymptotic lower bounds. Especially here, where the gap between the time
complexities for sieving with spherical filtering (0.292d+0(d)) and cross-polytope
hashing (0.298d + o(d)) is so small, there is no guarantee that spherical filtering
will be faster than cross-polytope hashing.

6 Nearest neighbor searching on the Hamming cube

We instantiate the nearest neighbor problem from Definition @] with the the Ham-
ming cube M = {0, 1}? and the Hamming metric d(x,y) = |{i € [d] : z; # yi}| =
||x — yll1. Throughout Sections [67] we will write ||- || = |- [|1 for the Hamming
distance, and for the Hamming weight of vectors on the Hamming cube. It will
further be easier to work with dimensionless versions of Hamming distances. In
particular, we will denote the dimensionless target distance of the nearest neigh-
bor problem by 7, i.e., v := r/d. This applies to other distances we introduce
below.

We start this section by obtaining a lower bound on nearest neighbor search
using the result of Andoni-Razenstein [AR16]. Next we show that the algorithm
of May—Ozerov [MO15] matches this lower bound in the sparse regime and comes
extremely close to it in the dense regime.

6.1 The Andoni—Razenshteyn lower bound
Following [AR16], for x € F and 0 < v < 1/2, let us denote by N, (x) a vector

from F¢ such that (N,(x)); = z; with probability 1 — v and (N,(x)); = z; ® 1
with probability v. So for any x and N,(x), the Hamming distance between

20

them is on expectation 7y - d. For any hash function h, define

1= P;d [h(x) = h(y)], p2= Pr [h(x) = h(y)].
x~ Iy X, y~Iy
y~Ny (x)

We are interested in the quantity p = In(1/p1)/In(1/p2), which defines the
complexity of the nearest neighbor search when applied to the closest pairs
problem. In particular, we are interested in a lower bound on p given in the
following lemma.

Lemma 2 (Collision probabilities for {0,1}? [AR16, Lemma 5]). For
every hash function h : {0,1}¢ — Z and every 0 < v < 1/2:

~

P[0 =A< P (bx) = Ay ()
y~Ny %u) 7 ’

This lemma gives the relation between the probabilities p1, p2 and thus, tells
what is the best sensitivity parameter p we can hope for. Namely, for the target
distance r = ~yd, using the above lemma we obtain the lower bound p > ~v/(1—7).
So the best we could achieve is the query time 7% = |L|” and the total runtime
of the nearest neighbor problem is 7' = \L|1+p7 which is the runtime of both the
preprocessing step and the query step, when the number of queries is |L|. Taking
the logarithm, we obtain the following lower bound:

1
-7

log, T > 1 logy |L]. (5)

Next we compare the obtained lower bound with what is achieved in [MO15].

6.2 Spherical caps on the Hamming cube

For the dense case, the best known algorithm for the nearest neighbor problem
is due to May—Ozerov [MOI5] (see a recent result of Esser et. al [EKZ21] for a
different analysis of this algorithm). At the heart of May—Ozerov is a hashing
technique analogous to the one defined in Theorem [3] which is based on spherical
caps in the Hamming space. As the main application of this hashing technique
is to solve the closest pairs problem, we shall describe it the setting when the
insert regions U; and the query regions @; are the same.

The set up for the nearest neighbor data structure is as follows. An insertion
region is defined by a center v; C F¢ of the spherical cap U; = {z € F¢ :
|z — v;|| < B} C F4, where 3 is the insertion parameter subject to optimization.
The purpose of these regions is similar to the Euclidean metric case: when two
vectors end up in the same region, i.e., both are close to some v;, then these
vectors are also likely to be nearby to one another on the cube.

Given on input a list L C F¢, the nearest neighbor search assigns each y € L
to its regions thus defining the buckets as B; = U; N L. The nearest neighbor
data structure D consists of the union of all these buckets. Given a query x we

21

then look at all buckets B; that are a-close to x (i.e., all v; with ||x — v;|| <),
and we check if any of the vectors y stored in these buckets gives a solution to
the nearest neighbor problem with parameter ~.

Similar to Theorem [3] we assume that we can efficiently find all relevant
centers to a given point. An efficient procedure for that is called the ‘stripes
technique’ and is described in [MO15]. The idea is to make the filter vec-
tors structured (i.e., a concatenation of several codewords from some lower-
dimensional codes). We will not describe this technique here in detail (for that,
see [BDGLIGIMOT5]), but remark the main advantage of such a construction:
it allows us find all close buckets in time (up to lower-order terms) equal to the
output size.

When nearest neighbor searching is applied to the closest pairs problem, the
number of queries is equal to |L|. In this case, the optimal choice of parameters
isa« =3 =H 1 —log,|L|/d) so that the runtime T of the nearest neighbor
search step are determined by the total number of buckets |U;| which we denote
as t. This number is computed in [MO15, Theorem 1].

Theorem 7 (Hash-based complexities for {0,1}¢ [MO15, Thm. 1]). To
solve the nearest neighbor problem in the Hamming metric with some fized target
0 <~y <1/2, withy = 6(d), the May—-Ozerov algorithm uses a number t of hash
regions satisfying:

(6)

oyt — (1) (1 o (H1(1 — log, |L|/d) - v/2)> |

L—n

The following observation is important for our result: when the list size |L|

becomes subexponential in the dimension d, then the number of hash regions
1

given above converges to |L|™=7. More precisely, [MO15, Corollary 1] shows that:

logy t 1
= ™)

lim =
Llog,|L|—0 logy [L| 1 —7

We shall next compare the lower and upper bounds for nearest neighbor
searching on the Hamming cube.

6.3 Comparison between upper and lower bounds

Notice first that the lower bound given in Equation [5| matches exactly the per-
formance of the May—Ozerov upper bound in the setting when the input list size
is subexponential in the dimension, i.e., in the sparse regime.

Decoding algorithms we discuss in the next section work in the dense regime,
i.e., when |L| = 2°¢ for a constant c. In this regime the above lower bound does
not exactly match the complexity of May—Ozerov given in Equation @ as one
can see from the plot given in Figure [I where we compare the two nearest
neighbor search runtimes given in Equation . For a given target distance v we
set |L| = 233 H () so we expect only sub-exponentially many pairs from L to
satisfy the target distance condition, assuming L consists of uniformly randomly

22

vectors. Notice that the larger ~ is, the smaller the list sizes we choose and
the closer both bounds are to each other. This is consistent with the fact that
May—Ogzerov is optimal in the sparse regime.

One source of the discrepancy between the upper bound of May—Ozerov
and the lower bound based on the Andoni—Razensteyn result is that the latter
uses the probabilistic distance between the two close vectors x,y, namely the
distance follows a binomial distribution with expected value ~ - d, while the
algorithm of [MOT5] targets to find x, y whose distance is at most -d (with high
concentration at the boundary). The tails of the distributions of the distances
differ in these two cases leading to a gap between the bounds.

Another source of the gap lies in an inequality which Andoni-Razensteyn
used in the proof of Lemma [2| In particular, they use the fact (see for
a proof) that for an arbitrary set A C F4, Pry piyon myx€A|y €Al <

(|A| /2d)W(177). This inequality is not tight when A is chosen to be a spherical
cap in the Hamming space. This leaves the question of whether one can construct
a set A, which would be useful for nearest neighbor searching (that is, it would
have an efficient membership oracle), and for which the inequality holds with
equality. That would give an improvement to nearest neighbor searching in the
dense regime, albeit a very small one, as we shall see in the next section.

0.3 —@— query time complexity (upper bound)
) —&— query time complexity (lower bound)

—o— list size exponent + — 1 H(v)

(logyt)/d

0.1

(s I \ | \ I | | I
0 005 01 015 02 025 03 035 04 045 0.5

vy=r/d

Fig. 1: Nearest neighbor search runtime exponents (dimensionless) for the target

distance ~ for lists of sizes 2(%7%H(7))d, i.e., we expect sub-exponentially many
solutions. Upper bounds are determined by the number of hash regions ¢ and
follow from Equation @, while lower bounds are based on Equation .

23

7 Application to decoding and code-based cryptography

All currently known fastest information set decoding algorithms for the dense
setting make use of nearest neighbor searching. The goal of this chapter is to see
how far down we could push the complexity of these decoding algorithms if we
had a nearest neighbor search technique that matches the lower bound derived
in the previous section.

In this section we will consider two algorithms: Stern’s algorithm [Ste89],
and the most recent algorithm of Both-May [BM18]. The first is the simplest
information set decoding algorithm where nearest neighbor searching can be
applied, while the second is the one that achieves the best currently known
asymptotic time complexities.

7.1 Stern’s algorithm

Recall from Definition [2] that as input the information set decoding problem
receives a parity check matrix H € F$**? and a syndrome s € FS~%. Stern’s
algorithm transforms the parity check matrix H into systematic form [Q | Iy—g]
(provided the last d — k columns of H form an invertible matrix, which happens
with constant success probability). The same transformation is applied to the
syndrome s giving a new syndrome §. So the task is to find e that satisfies the
equation:

QI 1]-e=5 for Qe FIFxF, (8)

Stern’s algorithm searches for a vector e whose weight is p > 0 on the last d — k
coordinates (hence, weight w—p on the first k coordinates). The probability that
this happens is P = (f}) (i__];) / (g) The inverse of this quantity is the expected
number of permutations we need to apply on H to obtain the desired weight

distribution on e. Once a good permutation is found, Equation rewrites as:
Q61+Q82+83:§ — Q91%Q82+§. (9)

Here e; has weight p/2 on the first k/2 coordinates and is 0 on the last d — k/2
coordinates, es has weight p/2 on the coordinates {k/2 4+ 1,...,k} and is 0
elsewhere, and |les|| = w — p. Enumerating over all e; and es into the lists
Ly = {(Qe1,e1)} and Ly = {(Qez + s,e2)}, we receive an instance of the
nearest neighbor problem with target distance w — p in the Hamming metric.
May—Ozerov in [MOI5] propose to solve this task with nearest neighbor
searching and obtain the runtime of Stern’s algorithm as illustrated in Figure
We compare this with the decoding complexities if instead of the upper bound of
May—Ozerov, the lower bound runtimes from Equation are substituted. Note
that this is different from the comparison given in Figure[I]since the complexity
of Stern’s algorithm is not only determined by the complexity of the nearest
neighbor subroutine, but also by the number of permutations. For various code
rates k, Figure [2| compares the runtime exponents ¢ for Stern’s algorithm when
(i) the nearest neighbor technique of [MO15] as in Equation (6]) is used, or (ii)

24

0.12 7 A
0.11 |-

0.1
0.09 |-
0.08 |-
0.07 -
0.06 -
0.05 |-
0.04 |-

0.03 - —@— Stern time complexity (upper bound)
0.02 —m— Stern time complexity (lower bound) -

(logy t)/d

0.01 —@— list size exponents (upper bound)

—%— list size exponents (lower bound)

0 LS | | : ‘ - ‘ - - | 4
0 01 02 03 04 05 06 07 08 09 1

R=k/d

Fig. 2: Runtime exponents for Stern’s information set decoding algorithm when
either May—Ozerov’s nearest neighbor search approach is used (blue circles), or
when the lower bound is implemented (red squares). The code rate R is on the
horizontal axis. The other two plots show the list size exponents that Stern’s
algorithm runs the nearest neighbor step on. The faster nearest neighbor search-
ing (the lower bound) allows larger lists, hence there is a bigger gap between the
list sizes in the most dense regime (around R = 0.5). The larger or the smaller
the code rate is, the closer we are to the sparse setting, so the closer lower and
upper bounds to each other.

the lower bound for nearest neighbor searching is used. It also gives correspond-
ing list sizes |Li| = |La| = (Z) ~ 2FH(P/F) but note that the optimal value for
p slightly differs between the two runtimes. As the nearest neighbor search step
becomes cheaper, the p is allowed to increase leading to larger lists.

7.2 The Both—May algorithm

The recent information set decoding algorithm due to Both-May [BMI8] sig-
nificantly improves Stern’s algorithm, and is currently the fastest algorithm for
solving the information set decoding problem in the dense regime. We shall not
describe the algorithm here but point out that the algorithm uses two-step near-
est neighbor searching.

Similar to Stern’s algorithm we compare the runtime of the Both-May al-
gorithm when for the nearest neighbor steps, either (i) the best known nearest
neighbor approach of May—Ozerov is used, or (ii) the lower bound given in Equa-
tion is used. Optimal runtimes for each code rate k are given in Figure

25

We notice that the Both—May algorithm, while being quite close to the lower
bound, leaves more potential for improvement than Stern’s algorithm. This can
be explained by looking at the lists sizes: the Both-May algorithm allows for
larger lists that Stern’s algorithm, thus making the contribution of the nearest
neighbor subroutine more substantial. Still, our conclusion is that a potential
improvement in the nearest neighbor subroutine will not significantly improve
the overall algorithm.

0.1
0.09
0.08
0.07
0.06 |-
0.05 |-
0.04
0.03 |-

(logyt)/d

—@— Both—May time complexity (upper bound)
0.02 - —— Both-May time complexity (lower bound)
0.01 | —— list size exponents (upper bound)

—k— list size exponents (lower bound)
| T | eS|

L : : : : : :
0 01 02 03 04 05 06 07 08 09 1

R=k/d

0

Fig. 3: Runtime exponents for the Both-May [BM18] algorithm when either the
May—Ozerov [MO15] upper bound is used (blue circles), or our lower bound is
substituted (red squares). The other two plots show the list size exponents that
nearest neighbor searching receives on input. The code rate R is on the X-axis.

7.3 Relevance for code-based cryptography

The hardness of the information set decoding problem is essential for the se-
curity of prominent code-based cryptosystems, such as the McEliece cryptosys-
tem [McET7§|. All proposed constructions for the NIST standardization compe-
tition [BCLT19] work in the regime where the error is of weight sub-linear in
d, thus making Stern’s algorithm and other faster information set decoding al-
gorithms like [BM18] asymptotically irrelevant [CTS16]. This does not imply,
however, that these information set decoding algorithms are practically irrele-
vant for concrete parameters. To the best of our knowledge, the question of the
exact complexity of the fastest information set decoding algorithms using recent
improvements has not been investigated. This leaves the possibility that infor-
mation set decoding algorithms which do use nearest neighbor techniques will

26

eventually be recognized as being actually applicable to cryptographic parame-
ters as well, in which case our lower bounds may serve as conservative estimates
for potential attack costs, and for choosing parameters.

Acknowledgments

Elena Kirshanova is supported by the “5-100” Russian academic excellence
project and by the Young Russian Mathematics scholarship. Thijs Laarhoven is
supported by a Veni grant from NWO under project number 016.Veni.192.005.
Part of this work was done while both authors were visiting the Simons Insti-
tute for the Theory of Computing at UC Berkeley for the Spring 2020 program
“Lattices: Algorithms, Complexity, and Cryptography.”

References

AD97. Miklés Ajtai and Cynthia Dwork. A public-key cryptosystem with worst-
case/average-case equivalence. In STOC, pages 284-293, 1997.

ADH'19. Martin R. Albrecht, Léo Ducas, Gottfried Herold, Elena Kirshanova, Ea-
monn Postlethwaite, and Marc Stevens. The general sieve kernel and new
records in lattice reduction. In FUROCRYPT, pages 717-746, 2019.

ADRS15. Divesh Aggarwal, Daniel Dadush, Oded Regev, and Noah Stephens-
Davidowitz. Solving the shortest vector problem in 2" time via discrete
Gaussian sampling. In STOC, pages 733-742, 2015.

AGPS19. Martin R. Albrecht, Vlad Gheorghiu, Eamonn W. Postlethwaite, and
John M. Schanck. Estimating quantum speedups for lattice sieves. Cryp-
tology ePrint Archive 2019/1161, 2019.

AT06. Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for
approximate nearest neighbor in high dimensions. In FOCS, pages 459—
468, 2006.

AILT15. Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya Razenshteyn, and
Ludwig Schmidt. Practical and optimal LSH for angular distance. In
NIPS, pages 1225-1233, 2015.

AINR14. Alexandr Andoni, Piotr Indyk, Huy Lé Nguyén, and Ilya Razenshteyn.
Beyond locality-sensitive hashing. In SODA, pages 1018-1028, 2014.

AKSO1. Miklés Ajtai, Ravi Kumar, and Dandapani Sivakumar. A sieve algorithm
for the shortest lattice vector problem. In STOC, pages 601-610, 2001.

ALRW17. Alexandr Andoni, Thijs Laarhoven, Ilya Razenshteyn, and Erik Wain-
garten. Optimal hashing-based time-space trade-offs for approximate near
neighbors. In SODA, pages 4766, 2017.

ANSS18. Yoshinori Aono, Phong Q. Nguyen, Takenobu Seito, and Junji Shikata.
Lower bounds on lattice enumeration with extreme pruning. In CRYPTO,
pages 608-637, 2018.

ARI15. Alexandr Andoni and Ilya Razenshteyn. Optimal data-dependent hashing
for approximate near neighbors. In STOC, pages 793-801, 2015.
ARI16. Alexandr Andoni and Ilya Razenshteyn. Tight lower bounds for data-

dependent locality-sensitive hashing. In SOCG, pages 1-15, 2016.

27

BCD™16.

BCL*19.

BDGLI16.

BDKT18.

BGJ15.

BGML™18.

BJMM12.

BL16.
BLS16.
BM18.

BT76.

Chrl7.

CTS16.

DLAW20.

DLvW20.

Ducl8.

EKZ21.

Joppe Bos, Craig Costello, Léo Ducas, Ilya Mironov, Michael Naehrig,
Valeria Nikolaenko, Ananth Raghunathan, and Douglas Stebila. Frodo:
Take off the ring! practical, quantum-secure key exchange from LWE. In
CCS, pages 1006-1018, 2016.

Daniel J. Bernstein, Tung Chou, Tanja Lange, Ingo von Maurich, Rafael
Misoczki, Ruben Niederhagen, Edoardo Persichetti, Christiane Peters, Pe-
ter Schwabe, Nicolas Sendrier, Jakub Szefer, and Wen Wang. Classic
McEliece: conservative code-based cryptography, 2019.

Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. New direc-
tions in nearest neighbor searching with applications to lattice sieving. In
SODA, pages 10-24, 2016.

Joppe Bos, Léo Ducas, Eike Kiltz, Tancréde Lepoint, Vadim Lyuba-
shevsky, John M. Schanck, Peter Schwabe, and Damien Stehlé. CRYS-
TALS — Kyber: a CCA-secure module-lattice-based KEM. In Furo S&P,
pages 353-367, 2018.

Anja Becker, Nicolas Gama, and Antoine Joux. Speeding-up lattice siev-
ing without increasing the memory, using sub-quadratic nearest neighbor
search. Cryptology ePrint Archive, Report 2015/522, pages 1-14, 2015.
Sauvik Bhattacharya, Oscar Garcia-Morchon, Thijs Laarhoven, Ronald
Rietman, Markku-Juhani O. Saarinen, Ludo Tolhuizen, and Zhenfei
Zhang. Roundb5: Compact and fast post-quantum public-key encryption.
Cryptology ePrint Archive, Report 2018/725, 2018.

Anja Becker, Antoine Joux, Alexandre May, and Alexandre Meurer. De-
coding random binary linear codes in 2720 How 14+ 1 = 0 improves
information set decoding. In EUROCRYPT, pages 520-536, 2012.

Anja Becker and Thijs Laarhoven. Efficient (ideal) lattice sieving using
cross-polytope LSH. In AFRICACRYPT, pages 3-23, 2016.

Shi Bai, Thijs Laarhoven, and Damien Stehlé. Tuple lattice sieving. In
ANTS, pages 146-162, 2016.

Leif Both and Alexander May. Decoding linear codes with high error rate
and its impact for lpn security. In PQCrypto, pages 25-46, 2018.

Albert Baernstein and B.A. Taylor. Spherical rearrangements, subhar-
monic functions, and * -functions in n -space. Duke Math. J., 43(2):245—
268, 06 1976.

Tobias Christiani. A framework for similarity search with space-time
tradeoffs using locality-sensitive filtering. In SODA, pages 31-46, 2017.
Rodolfo Canto Torres and Nicolas Sendrier. Analysis of information set
decoding for a sub-linear error weight. In Proceedings of the Tth In-
ternational Workshop on Post-Quantum Cryptography - Volume 9606,
PQCrypto 2016, page 144-161, 2016.

Emmanouil Doulgerakis, Thijs Laarhoven, and Benne de Weger. Sieve,
enumerate, slice, and lift: Hybrid lattice algorithms for SVP via CVPP.
In AfricaCrypt, 2020.

Léo Ducas, Thijs Laarhoven, and Wessel van Woerden. The randomized
slicer for CVPP: Sharper, faster, smaller, batchier. In PKC, pages 3-36,
2020.

Léo Ducas. Shortest vector from lattice sieving: a few dimensions for free.
In EUROCRYPT, pages 125-145, 2018.

Andre Esser, Robert Kiibler, and Floyd Zweydinger. A faster algorithm
for finding closest pairs in hamming metric, 2021.

28

FP85.

Gen09.

GGH13.

GNR10.

GPVO08S.

HK17.

HKL18.

JL84.

Kang&3.

Kle00.

KMPM19.

KV15.

Laalba.

Laalbb.

Laal6.

Laal?.

Laa20.

Laa2l.

Lan20.

LdW15.

LMvdP15.

Ulrich Fincke and Michael Pohst. Improved methods for calculating vec-
tors of short length in a lattice. Mathematics of Computation, 44(170):463~
471, 1985.

Craig Gentry. Fully homomorphic encryption using ideal lattices. In
STOC, pages 169178, 2009.

Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps
from ideal lattices. In EUROCRYPT, pages 1-17, 2013.

Nicolas Gama, Phong Q. Nguyén, and Oded Regev. Lattice enumeration
using extreme pruning. In FUROCRYPT, pages 257278, 2010.

Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for
hard lattices and new cryptographic constructions. In STOC, pages 197—
206, 2008.

Gottfried Herold and Elena Kirshanova. Improved algorithms for the ap-
proximate k-list problem in Euclidean norm. In PKC, pages 16—40, 2017.
Gottfried Herold, Elena Kirshanova, and Thijs Laarhoven. Speed-ups and
time-memory trade-offs for tuple lattice sieving. In PKC, pages 407-436,
2018.

William B. Johnson and Joram Lindenstrauss. Extensions of Lipschitz
mappings into a Hilbert space. Contemporary Mathematics, 26(1):189—
206, 1984.

Ravi Kannan. Improved algorithms for integer programming and related
lattice problems. In STOC, pages 193-206, 1983.

Philip Klein. Finding the closest lattice vector when it’s unusually close.
In SODA, pages 937-941, 2000.

Elena Kirshanova, Erik Martensson, Eamonn W. Postlethwaite, and Sub-
hayan Roy Moulik. Quantum algorithms for the approximate k-list prob-
lem and their application to lattice sieving. In ASTACRYPT, pages 521—
551, 2019.

Subhash A. Khot and Nisheeth K. Vishnoi. The unique games conjec-
ture, integrality gap for cut problems and embeddability of negative-type
metrics into ¢1. J. ACM, 62(1), 2015.

Thijs Laarhoven. Sieving for shortest vectors in lattices using angular
locality-sensitive hashing. In CRYPTO, pages 3—22, 2015.

Thijs Laarhoven. Tradeoffs for nearest neighbors on the sphere.
arXiw:1511.07527 [cs.DS], pages 1-16, 2015.

Thijs Laarhoven. Search problems in cryptography. PhD thesis, Eindhoven
University of Technology, 2016.

Thijs Laarhoven. Faster tuple lattice sieving using spherical locality-
sensitive filters. arXiv:1705.02828 [cs.DS], pages 1-14, 2017.

Thijs Laarhoven. Polytopes, lattices, and spherical codes for the nearest
neighbor problem. In ICALP, 2020.

Thijs Laarhoven. Approximate Voronoi cells for lattices, revisited. Journal
of Mathematical Cryptology, 15:1-21, 2021.

Tanja Lange. Overview of code-based crypto assumptions. Talk at Quan-
tum Cryptanalysis of Post-Quantum Cryptography, 2020.

Thijs Laarhoven and Benne de Weger. Faster sieving for shortest lattice
vectors using spherical locality-sensitive hashing. In LATINCRYPT, pages
101-118, 2015.

Thijs Laarhoven, Michele Mosca, and Joop van de Pol. Finding shortest
lattice vectors faster using quantum search. Designs, Codes and Cryptog-
raphy, 77(2):375-400, 2015.

29

LPR10.

McET78.

MMT11.

MNPO7.

MO15.

MRO7.

MV10a.

MV10b.

NVO08.

OWZ14.

Pan06.

Pra62.

PS09.

PTW10.

Reg05.

Regl10.

Rie30.

RSATS.

Sch19.
Sho94.

Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices
and learning with errors over rings. In EUROCRYPT, pages 1-23, 2010.
Robert J. McEliece. A public-key cryptosystem based on algebraic coding
theory. The Deep Space Network Progress Report, pages 114-116, 1978.
Alexandre May, Alexandre Meurer, and Enrico Thomae. Decoding random
linear codes in O(2°-°*"). In ASIACRYPT, volume 7073 of LNCS, pages
107-124, 2011.

Rajeev Motwani, Assaf Naor, and Rina Panigrahy. Lower bounds on local-
ity sensitive hashing. SIAM Journal of Discrete Mathematics, 21(4):930—
935, 2007.

Alexander May and Ilya Ozerov. On computing nearest neighbors with
applications to decoding of binary linear codes. In EUROCRYPT, pages
203-228, 2015.

Daniele Micciancio and Oded Regev. Worst-case to average-case re-
ductions based on Gaussian measures. SIAM Journal on Computing,
37(1):267-302, 2007.

Daniele Micciancio and Panagiotis Voulgaris. A deterministic single ex-
ponential time algorithm for most lattice problems based on Voronoi cell
computations. In STOC, pages 351-358, 2010.

Daniele Micciancio and Panagiotis Voulgaris. Faster exponential time al-
gorithms for the shortest vector problem. In SODA, pages 1468-1480,
2010.

Phong Q. Nguyén and Thomas Vidick. Sieve algorithms for the short-
est vector problem are practical. Journal of Mathematical Cryptology,
2(2):181-207, 2008.

Ryan O’Donnell, Yi Wu, and Yuan Zhou. Optimal lower bounds for
locality-sensitive hashing (except when g is tiny). ACM Transactions on
Computation Theory, 6(1):5:1-5:13, 2014.

Rina Panigrahy. Entropy based nearest neighbor search in high dimen-
sions. In SODA, pages 1186-1195, 2006.

Eugene Prange. The use of information sets in decoding cyclic codes. IRE
Trans. Inf. Theory, 8:5-9, 1962.

Xavier Pujol and Damien Stehlé. Solving the shortest lattice vector prob-
lem in time 224%™, Cryptology ePrint Archive, Report 2009/605, pages
1-7, 2009.

Rina Panigrahy, Kunal Talwar, and Udi Wieder. Lower bounds on near
neighbor search via metric expansion. In FOCS, pages 805-814, Oct 2010.
Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. In STOC, pages 84-93, 2005.

Oded Regev. The learning with errors problem (invited survey). In CCC,
pages 191-204, 2010.

Frederic Riesz. Sur une inégalité intégrale. Journal of the London Math-
ematical Society, s1-5(3):162-168, 1930.

Ronald L. Rivest, Adi Shamir, and Leonard Adleman. A method for ob-
taining digital signatures and public-key cryptosystems. Communications
of the ACM, 21(2):120-126, 1978.

John Schanck. Sieve tables, 2019.

Peter W. Shor. Algorithms for quantum computation: discrete logarithms
and factoring. In FOCS, pages 124-134, 1994.

30

SSTXO09.
Ste89.
svp20.

TTO07.

TT09.

Damien Stehlé, Ron Steinfeld, Keisuke Tanaka, and Keita Xagawa. Effi-
cient public key encryption based on ideal lattices. In ASTACRYPT, pages
617-635, 2009.

Jacques Stern. A method for finding codewords of small weight. In Coding
Theory and Applications, pages 106—113, 1989.

SVP challenge, 2020. http://latticechallenge.org/svp-challenge/|
Kengo Terasawa and Yuzuru Tanaka. Spherical LSH for approximate
nearest neighbor search on unit hypersphere. In WADS, pages 27-38,
2007.

Kengo Terasawa and Yuzuru Tanaka. Approximate nearest neighbor
search for a dataset of normalized vectors. IEICE Transactions on In-
formation and Systems, 92(9):1609-1619, 2009.

31

http://latticechallenge.org/svp-challenge/

	Lower bounds on lattice sieving and information set decoding

		k		 NN		 NNLow		 ListSize

		0.0100000000000000		 0.465718451716449		 0.464245890961661		 0.459603432052044

		0.0200000000000000		 0.440612559193828		 0.438040539519479		 0.429279728729090

		0.0300000000000000		 0.418676896670924		 0.415261928952796		 0.402804071084212

		0.0400000000000000		 0.398700064398690		 0.394639484852909		 0.378853905458793

		0.0500000000000000		 0.380128312796927		 0.375580548886339		 0.356801521442022

		0.0600000000000000		 0.362646813873034		 0.357742064279534		 0.336277540422762

		0.0700000000000000		 0.346054470297694		 0.340901262956869		 0.317038174549888

		0.0800000000000000		 0.330213022711006		 0.324902614020504		 0.298910404898864

		0.0900000000000000		 0.315022463446004		 0.309631968646097		 0.281765091467949

		0.100000000000000		 0.300407730036339		 0.295002448005955		 0.265502203205359

		0.110000000000000		 0.286310893656818		 0.280946090918805		 0.250042020917736

		0.120000000000000		 0.272686283255295		 0.267408599268543		 0.235319567356318

		0.130000000000000		 0.259497292380838		 0.254345870673570		 0.221280907486005

		0.140000000000000		 0.246714205664436		 0.241721621137875		 0.207880594178572

		0.150000000000000		 0.234312671770185		 0.229505703108000		 0.195079847641800

		0.160000000000000		 0.222272601897035		 0.217672884142520		 0.182845222679717

		0.170000000000000		 0.210577357502664		 0.206201940515530		 0.171147610627890

		0.180000000000000		 0.199213140047355		 0.195074972116903		 0.159961477135860

		0.190000000000000		 0.188168525287326		 0.184276876614878		 0.149264270058051

		0.200000000000000		 0.177434103226661		 0.173794940695398		 0.139035952556319

		0.210000000000000		 0.167002196805839		 0.163618519030839		 0.129258630034363

		0.220000000000000		 0.156866640315755		 0.153738780152586		 0.119916248519017

		0.230000000000000		 0.147022603881216		 0.144148504190560		 0.110994348226731

		0.240000000000000		 0.137466454046571		 0.134841921457551		 0.102479860307739

		0.250000000000000		 0.128195643119864		 0.125814583693911		 0.0943609377704336

		0.260000000000000		 0.119208621776684		 0.117063261829312		 0.0866268137536911

		0.270000000000000		 0.110504770807047		 0.108585865610839		 0.0792676818959122

		0.280000000000000		 0.102084348891389		 0.100381381555465		 0.0722745947199347

		0.290000000000000		 0.0939484540591603		 0.0924498265215461		 0.0656393768302977

		0.300000000000000		 0.0860989970720863		 0.0847922148352195		 0.0593545503846536

		0.310000000000000		 0.0785386854373630		 0.0774105374073502		 0.0534132708110716

		0.320000000000000		 0.0712710171311066		 0.0703077516731662		 0.0478092711377530

		0.330000000000000		 0.0643002834165778		 0.0634877815076659		 0.0425368136101362

		0.340000000000000		 0.0576315804215947		 0.0569555265355833		 0.0375906475134850

		0.350000000000000		 0.0512708293633323		 0.0507168804803916		 0.0329659723122545

		0.360000000000000		 0.0452248055407487		 0.0447787583941466		 0.0286584053722538

		0.370000000000000		 0.0395011764360464		 0.0391491327880429		 0.0246639536564670

		0.380000000000000		 0.0341085494867233		 0.0338370788497584		 0.0209789888868502

		0.390000000000000		 0.0290565303371845		 0.0288528290941907		 0.0176002257474563

		0.400000000000000		 0.0243557926428308		 0.0242078379544427		 0.0145247027726656

		0.410000000000000		 0.0200181608205455		 0.0199148569848949		 0.0117497656210880

		0.420000000000000		 0.0160567074926866		 0.0159880215227125		 0.00927305248317323

		0.430000000000000		 0.0124858678241234		 0.0124429498430528		 0.00709248141054009

		0.440000000000000		 0.00932157348755524		 0.00929685605173596		 0.00520623938897213

		0.450000000000000		 0.00658140966844669		 0.00656867819290157		 0.00361277300609586

		0.460000000000000		 0.00428479936925056		 0.00427922331460574		 0.00231078058988710

		0.470000000000000		 0.00245322035776404		 0.00245133153986827		 0.00129920571613018

		0.480000000000000		 0.00111046150400409		 0.00111006154307512		 0.000577232002399064

		0.490000000000000		 0.000282927078054200		 0.000282900242343232		 0.000144279123595048

		

		k		NN		NNLow		ListSize		ListSizeLB

		0.0100000000000000		 0.0110032573429920		 0.0109983387985257		 0.00234497796794641		 0.00234497796794641

		0.0300000000000000		 0.0231454324132165		 0.0230180161434632		 0.0132193634884604		 0.0132193634884604

		0.0500000000000000		 0.0340422058100434		 0.0338566346921149		 0.0170019261432070		 0.0170019261432070

		0.0700000000000000		 0.0437210876798848		 0.0435017272969676		 0.0193727542909154		 0.0193727542909154

		0.0900000000000000		 0.0524027562377213		 0.0521610691439083		 0.0211048017115177		 0.0211048017115177

		0.110000000000000		 0.0602341245452361		 0.0599764411927309		 0.0224704418584002		 0.0224704418584002

		0.130000000000000		 0.0673191777494324		 0.0670493430266531		 0.0235980194852462		 0.0235980194852462

		0.150000000000000		 0.0737356207262164		 0.0734548586268345		 0.0245583689365857		 0.0249536379538153

		0.170000000000000		 0.0795438806231183		 0.0792358000181111		 0.0253947583769876		 0.0274343415062788

		0.190000000000000		 0.0847862394463700		 0.0844408841142865		 0.0272077109260158		 0.0294973869062968

		0.210000000000000		 0.0894961953529463		 0.0891150853134002		 0.0290005199030336		 0.0315410988233021

		0.230000000000000		 0.0937106080019793		 0.0932955309168451		 0.0307777244225091		 0.0335698921315094

		0.250000000000000		 0.0974605108108285		 0.0970133340864129		 0.0323201623948718		 0.0353736057988864

		0.270000000000000		 0.100772161628340		 0.100294713195796		 0.0338471150651390		 0.0369460724765994

		0.290000000000000		 0.103668061645748		 0.103162345481140		 0.0351323674169501		 0.0385010452538612

		0.310000000000000		 0.106167699315945		 0.105635597567595		 0.0364013744616820		 0.0398182224809591

		0.330000000000000		 0.108288051500545		 0.107731543307106		 0.0374210854055818		 0.0411174207608689

		0.350000000000000		 0.110043881585289		 0.109464932156447		 0.0386618009977744		 0.0421716159914078

		0.370000000000000		 0.111448219740704		 0.110848872264416		 0.0394098205991726		 0.0432066868094019

		0.390000000000000		 0.112512615227403		 0.111894876848648		 0.0403829489287792		 0.0442249191156875

		0.410000000000000		 0.113247181496524		 0.112612992026350		 0.0410966082153906		 0.0449894964519889

		0.430000000000000		 0.113660928599608		 0.113012305226008		 0.0417942494337888		 0.0454929117478369

		0.450000000000000		 0.113761657301621		 0.113100607480099		 0.0422236218742019		 0.0462187359617556

		0.470000000000000		 0.113556447397668		 0.112884991737277		 0.0426340515651228		 0.0466808954521829

		0.490000000000000		 0.113051337440129		 0.112371562858040		 0.0430271396272476		 0.0471234938788559

		0.510000000000000		 0.112251699537113		 0.111565561194316		 0.0434042923746709		 0.0472931255884604

		0.530000000000000		 0.111161993850292		 0.110471671914945		 0.0435002143826180		 0.0474399649497161

		0.550000000000000		 0.109786201461143		 0.109093811293547		 0.0435764938810603		 0.0475655806996740

		0.570000000000000		 0.108127551826839		 0.107435112608722		 0.0436344106888668		 0.0474060584083113

		0.590000000000000		 0.106188453857636		 0.105498304762242		 0.0433983266558733		 0.0472212851929589

		0.610000000000000		 0.103971009116316		 0.103285372055637		 0.0431393654752552		 0.0467396300226206

		0.630000000000000		 0.101476481945372		 0.100797577391721		 0.0428586751652141		 0.0465048595483572

		0.650000000000000		 0.0987055206340720		 0.0980357605364482		 0.0422691250082065		 0.0459681763260916

		0.670000000000000		 0.0956581570354853		 0.0949998947468292		 0.0416522171782995		 0.0451187667667391

		0.690000000000000		 0.0923335860014171		 0.0916895119910947		 0.0410089100600621		 0.0442342003106890

		0.710000000000000		 0.0887304524628235		 0.0881031552157608		 0.0403400637450974		 0.0433154384368882

		0.730000000000000		 0.0848465073246756		 0.0842388487181826		 0.0393411729683638		 0.0423633222314641

		0.750000000000000		 0.0806785933481464		 0.0800934026161886		 0.0383092636532439		 0.0410747471487185

		0.770000000000000		 0.0762225193081832		 0.0756628084289114		 0.0369290915655746		 0.0394342953874833

		0.790000000000000		 0.0714728784523152		 0.0709420473465373		 0.0355060332595304		 0.0377403992096472

		0.810000000000000		 0.0664369822141900		 0.0659243294382499		 0.0356692649114759		 0.0359926478074838

		0.830000000000000		 0.0611379467240875		 0.0606222501533606		 0.0358284928459499		 0.0358284928459499

		0.850000000000000		 0.0555996128587625		 0.0550891408145540		 0.0359839087768737		 0.0359839087768737

		0.870000000000000		 0.0498760352933031		 0.0493890620475940		 0.0361189134925088		 0.0361189134925088

		0.890000000000000		 0.0432478527107131		 0.0428561042931306		 0.0305554719891667		 0.0305554719891667

		0.910000000000000		 0.0363503606046163		 0.0360480819695116		 0.0249749583846725		 0.0249749583846725

		0.930000000000000		 0.0291461332098780		 0.0289269347025553		 0.0193864071148651		 0.0193864071148651

		0.950000000000001		 0.0215676313903188		 0.0214122756267707		 0.0154610718953378		 0.0154610718953378

		0.970000000000001		 0.0135307770561376		 0.0134493089981781		 0.0113884830414985		 0.0113884830414985

		k		NN		NNLow		ListSize		ListSizeLB

		0.0100000000000000		 0.00799379789748889		 0.00797242743567428		 0.00475336046343533		 0.00483975267846820

		0.0350000000000000		 0.0230126434688465		 0.0230126434688465		 0.0140408650993790		 0.0140408650993790

		0.0600000000000000		 0.0354767026787075		 0.0350390082911637		 0.0214563337204995		 0.0212517806010913

		0.0850000000000000		 0.0456968787287925		 0.0450301899339997		 0.0282365291846183		 0.0285168968578450

		0.100000000000000		 0.0512672641085846		 0.0503058956165674		 0.0304992155014027		 0.0304710126069774

		0.125000000000000		 0.0592675113245369		 0.0566435274940152		 0.0364341385782299		 0.0382576424201106

		0.150000000000000		 0.0662182416451941		 0.0636798278117728		 0.0416016966992156		 0.0432176305225392

		0.175000000000000		 0.0722136597373545		 0.0708387481253522		 0.0475969689432313		 0.0467484967238319

		0.200000000000000		 0.0774705254555057		 0.0758619033858334		 0.0518484667733109		 0.0527921920940007

		0.225000000000000		 0.0820465586713069		 0.0802409421429857		 0.0554823519820973		 0.0570651070150811

		0.250000000000000		 0.0858734634968130		 0.0840248481123846		 0.0594129464729306		 0.0596479536697517

		0.275000000000000		 0.0891696588103225		 0.0871643140625732		 0.0620761167783428		 0.0638505673663711

		0.300000000000000		 0.0919021403874274		 0.0897892930608416		 0.0644637913955641		 0.0658867913394144

		0.325000000000000		 0.0941065764114368		 0.0919101065405790		 0.0664929533172983		 0.0687335173256275

		0.350000000000000		 0.0958128734425180		 0.0935406411569519		 0.0680670383907354		 0.0703813582853978

		0.375000000000000		 0.0970459209660197		 0.0947228269895352		 0.0695399634607996		 0.0719224180689845

		0.400000000000000		 0.0978283292197101		 0.0954585033140967		 0.0700675772739228		 0.0726237088891271

		0.425000000000000		 0.0981707374465356		 0.0957800841370122		 0.0710622678859196		 0.0734929018102332

		0.450000000000000		 0.0980935330978555		 0.0957224537559155		 0.0714743938791250		 0.0749592758182422

		0.475000000000000		 0.0976095463982463		 0.0952205998025809		 0.0716883569898401		 0.0736414051151166

		0.500000000000000		 0.0967305041549239		 0.0943666679673680		 0.0717053995251205		 0.0742308309779326

		0.525000000000000		 0.0954725663333590		 0.0931400688422407		 0.0723932136604581		 0.0725012997575840

		0.550000000000000		 0.0938212481484831		 0.0915458019825347		 0.0711489031207767		 0.0722584895693324

		0.575000000000000		 0.0918108472827409		 0.0896003968796878		 0.0702311072706052		 0.0711422771323027

		0.600000000000000		 0.0894407515516082		 0.0873011413607802		 0.0680383371010578		 0.0696805048204740

		0.625000000000000		 0.0866960763328606		 0.0846524904377438		 0.0672889296909463		 0.0688471698895579

		0.650000000000000		 0.0836164238899491		 0.0816768269966814		 0.0667658745938988		 0.0675005390065433

		0.675000000000000		 0.0801567515918687		 0.0783242848742288		 0.0629444596333350		 0.0649699910580299

		0.700000000000000		 0.0763554425598443		 0.0746370129066461		 0.0614183427724304		 0.0610271117122176

		0.725000000000000		 0.0721977805474853		 0.0706085518557473		 0.0579670741590240		 0.0582361436317307

		0.750000000000000		 0.0676881914975228		 0.0662414540496511		 0.0550577711812908		 0.0560253595630364

		0.775000000000000		 0.0628019740794636		 0.0615120190393081		 0.0516712207347329		 0.0522425732532767

		0.800000000000000		 0.0575610694021910		 0.0564252194992819		 0.0483067791740759		 0.0478632290568810

		0.825000000000000		 0.0523454807786205		 0.0514885435453173		 0.0480858513163567		 0.0471877669278249

		0.850000000000000		 0.0460418539026503		 0.0453088985078243		 0.0414637934085086		 0.0411488327399876

		0.875000000000000		 0.0395582064204796		 0.0389423763591940		 0.0343495357133587		 0.0353477240267372

		0.900000000000000		 0.0328314177585694		 0.0322465582808552		 0.0281843416772859		 0.0285185729615221

		0.925000000000000		 0.0257917350451114		 0.0252437739723517		 0.0217519648106556		 0.0220972720517876

		0.950000000000001		 0.0187047396301406		 0.0187047396301406		 0.0162212606658851		 0.0162212606658851

		0.975000000000001		 0.00987770984981453		 0.00987770984981453		 0.00821776528953924		 0.00821776528953924

