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Outline

• Hardness of LWE

• Algorithms for SVP



Part I

Open problems related to LWE



Learning with Errors (Regev’05)
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Classical hardness of LWE

BKZ, [HKM, AGVW] BKW, [GJS, KF]
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c worsens if #Samples = Θ(n)

s – binary/ternary

Lattice re-scaling improves c
slightly, [BG]

lgTime = c · 1
lg lgn · n

#Samples = Ω(n)

c depends on #Samples
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Open questions

1. Why lattice-based attacks do not asymptotically profit from
small s?

2. Standard LWE in dim n/ lg n reduces to LWE with binary s in
dim n [BLPRS]. The best known attack on binary LWE is
2n/ lg lgn. The picture is not complete here.

3. Combination of lattice-based and combinatorial algorithms
(aka hybrid attacks)? Complete analysis for small-secret
LWE/LWR under hybrid attacks
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Quantum hardness of LWE

I. Speed-ups of classical attacks

BKZ

lgTime = c · n
c = 0.265 · lg q lgn

lg2(q/σ)
= Θ(1)

BKW

No known speed-ups for LWE
For LPN see [EHKMS]

II. Quantum specific attacks

1. Kuperberg’s algorithm [Kup]

2. LWE with quantum samples [GKZ]
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Kuperberg’s algorithm [Kup]

1. From LWE obtain ` ∼ (LWE gap) samples of the form (Reg,
BKSW) ∑

j∈Z
ρr(j) |j〉 |x + j · s〉

2. Apply Kuperberg’s algorithm to find s

3. Complexity of this approach is

exp
(
c′
(

log `+
n log q

log `

))
This algorithm is no better than classical lattice-based approaches.

Open question: Quantum speed-ups for the problem of enumerating
(almost) all `2-small solutions x to the equation Ax = t (SIS problem).
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LWE with quantum samples

Thm. IV.1. in [GKZ]

For V ⊆ qn, given

|Ψ〉 =
1

|V |
∑
a∈V

|a〉 |〈a , s〉+ ea mod q〉 ,

a version of Bernstein-Vazirani algorithm finds s w.p. |V |
20|e|∞qn .

If we do not have enough samples (an idea):
1. Use sample amplification to produce∑

x

|x〉 |xA〉 |〈xA , s〉+ ea mod q〉

2. Solve SIS to “forget” the amplifier x and obtain |Ψ〉
3. Apply the above theorem

Open question: Analyse it.
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SVP in `2-norm (asymptotics, n–lattice rank)

Sieving (heuristic) [BDGL16, HK17] Enumeration, [ABF+]

time optimal:
logTime = 0.292n logTime = 1

8n log n
logMem = 0.208n Mem = poly(n)

mem. optimal for k = Θ(1):
logTime : see Eq.(8) in [HK]

logMem =
(
kk/k+1

k+1

)n/2

Open question:

Extend the analysis of memory efficient sieving to non-constant k
(k = lg(n) will tell which approach is asymptotically better)
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SVP in `∞-norm

• SVP∞ is relevant for lattice-based signatures (e.g., Kyber)

• Currently the complexity of SVP∞ relies on norm-equivalence
and average-case weight distribution

• The result of Aggarwal-Mukhopadhyay [AM] for SVP∞ yields
heuristic time complexity 20.62n using 2-lvl hashing.

Open questions:
Analyse SVP∞ alg. of [AM] using locality-sensitive techniques from
[BDGL16].

Combinatorial algorithms for SVP∞?



SVP in `∞-norm

• SVP∞ is relevant for lattice-based signatures (e.g., Kyber)

• Currently the complexity of SVP∞ relies on norm-equivalence
and average-case weight distribution

• The result of Aggarwal-Mukhopadhyay [AM] for SVP∞ yields
heuristic time complexity 20.62n using 2-lvl hashing.

Open questions:
Analyse SVP∞ alg. of [AM] using locality-sensitive techniques from
[BDGL16].

Combinatorial algorithms for SVP∞?



Sieving in ideal lattices

• Significant speed-ups for SVP algorithms
(enumeration/sieving) on ideal/structural lattices are not
known

• Recent results [KEF] show that one can exploit the structure
of tower fields

Open question:
Can similar ideas speed-up sieving algorithms?



List of open problems

• Hardness of LWE for small secret

• Quantum hardness of LWE

• Memory efficient sieving

• SVP in `∞-norm

• Use of subfields/subrings to speed-up sieving algorithms

Thank you!
Q?
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