
Sieving in practice: The Generalized Sieve Kernel (G6K)

Elena Kirshanova

based on joint work with Martin R. Albrecht, Leo Ducas, Eamonn W.
Postlethwaite, Gottfried Herold, Marc Stevens

The Simons Institute for the Theory of Computing
May 5, 2020

Part 0

Preliminaries

Short vectors in L

0

b1

b2

v

Given {b1, . . . ,bn} – a basis of L, the Shortest Vector Problem (SVP)
asks to find non-zero v of minimal length.

We do not know ||vshortest|| in general, but for any n-rank L:

||vshortest|| ≤
√
n · det(L)1/n (Minkowski’s bound)

Short vectors in L

0

b1

b2

v

Given {b1, . . . ,bn} – a basis of L, the Shortest Vector Problem (SVP)
asks to find non-zero v of minimal length.

We do not know ||vshortest|| in general, but for any n-rank L:

||vshortest|| ≤
√
n · det(L)1/n (Minkowski’s bound)

Lattices of our interest

Goldstein-Mayer type of lattice with a basis given by columns:

B =


p x1 . . . xn−1
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 ,

where p is a large prime and xi are iid. uniform random from
{0, . . . , p− 1}.

det(L(B)) = p =⇒ ||vshortest|| ≤
√
np1/n

We’ll be fine with v slightly longer than the shortest, e.g.,
||v|| ≈ 1.05 ·

√
n det(L)1/n (1.05− Hermite-SVP)

Projected lattice

0

b2

b1

L1:1

b1 = b?1

b?2b
?
2

· b1, . . . ,bn – basis of L

· b?i is the projection of bi on L⊥1:i−1. (GSO)· b?i is the projection of bi on L⊥1:i−1 (GSO)
· b1,b

?
2, . . . ,b

?
n- GSO basis of L

· often it is convenient to represent lattice vectors in GSO basis

Projected lattice

0

b2

b1

L1:1

b1 = b?1

b?2b
?
2

· b1, . . . ,bn – basis of L

· b?i is the projection of bi on L⊥1:i−1. (GSO)· b?i is the projection of bi on L⊥1:i−1 (GSO)
· b1,b

?
2, . . . ,b

?
n- GSO basis of L

· often it is convenient to represent lattice vectors in GSO basis

Projected lattice

0

b2

b1

L1:1

b1 = b?1

b?2

b?2

· b1, . . . ,bn – basis of L
· b?i is the projection of bi on L⊥1:i−1. (GSO)

· b?i is the projection of bi on L⊥1:i−1 (GSO)
· b1,b

?
2, . . . ,b

?
n- GSO basis of L

· often it is convenient to represent lattice vectors in GSO basis

Projected lattice

0

b2

b1

L1:1

b1 = b?1

b?2

b?2

· b1, . . . ,bn – basis of L

· b?i is the projection of bi on L⊥1:i−1. (GSO)

· b?i is the projection of bi on L⊥1:i−1 (GSO)
· b1,b

?
2, . . . ,b

?
n- GSO basis of L

· often it is convenient to represent lattice vectors in GSO basis

Projected lattice

0

b2

b1

L1:1

b1 = b?1

b?2

b?2

· b1, . . . ,bn – basis of L

· b?i is the projection of bi on L⊥1:i−1. (GSO)

· b?i is the projection of bi on L⊥1:i−1 (GSO)
· b1,b

?
2, . . . ,b

?
n- GSO basis of L

· often it is convenient to represent lattice vectors in GSO basis

What is inside g6k
The General Sieve Kernel implements

1. Exact-SVP
The output is compared against the Gaussian heuristic

2. 1.05-Hermite SVP
Darmstadt SVP-Challenge

3. BKZ

4. LWE
Darmstadt LWE-Challenge

Each of the above can use either of the following sieve:

• gauss_sieve

• nv_sieve (Nguyen-Vidick sieve)

• bjg1 (single- or multi-threaded) (Becker-Gama-Joux bucket
sieve)

• triple_sieve (single- or multi-threaded)

What is inside g6k
The General Sieve Kernel implements

1. Exact-SVP
The output is compared against the Gaussian heuristic

2. 1.05-Hermite SVP
Darmstadt SVP-Challenge

3. BKZ

4. LWE
Darmstadt LWE-Challenge

Each of the above can use either of the following sieve:

• gauss_sieve

• nv_sieve (Nguyen-Vidick sieve)

• bjg1 (single- or multi-threaded) (Becker-Gama-Joux bucket
sieve)

• triple_sieve (single- or multi-threaded)

Part I

nv_sieve

Nguyen-Vidick sieve

All sieving algorithms start by sampling lots of lattice vectors into
a list L and by sorting it.

L

x

y

x± y
x′ ± y′
x′′ ± y′′
x′′′ ± y′′′

• Sampling can be done by 1. sampling the last
coordinates wrt. GSO basis and 2. lifting to the
full lattice using Babai

• Sieving searches for pairs x,y ∈ L s.t. ‖x± y‖
is small

• Once found replace the longest vector in L with
x± y

• The next short x′ ± y′ replaces the current
longest on L

• Stop when “enough” short pairs are found

Runtime: |L|2. For |L| =
(
4
3

)n/2
, T = 20.415n

Nguyen-Vidick sieve

All sieving algorithms start by sampling lots of lattice vectors into
a list L and by sorting it.

L

x

y

x± y
x′ ± y′
x′′ ± y′′
x′′′ ± y′′′

• Sampling can be done by 1. sampling the last
coordinates wrt. GSO basis and 2. lifting to the
full lattice using Babai

• Sieving searches for pairs x,y ∈ L s.t. ‖x± y‖
is small

• Once found replace the longest vector in L with
x± y

• The next short x′ ± y′ replaces the current
longest on L

• Stop when “enough” short pairs are found

Runtime: |L|2. For |L| =
(
4
3

)n/2
, T = 20.415n

Nguyen-Vidick sieve

All sieving algorithms start by sampling lots of lattice vectors into
a list L and by sorting it.

L

x

y

x± y

x′ ± y′
x′′ ± y′′
x′′′ ± y′′′

• Sampling can be done by 1. sampling the last
coordinates wrt. GSO basis and 2. lifting to the
full lattice using Babai

• Sieving searches for pairs x,y ∈ L s.t. ‖x± y‖
is small

• Once found replace the longest vector in L with
x± y

• The next short x′ ± y′ replaces the current
longest on L

• Stop when “enough” short pairs are found

Runtime: |L|2. For |L| =
(
4
3

)n/2
, T = 20.415n

Nguyen-Vidick sieve

All sieving algorithms start by sampling lots of lattice vectors into
a list L and by sorting it.

L

x

y

x± y
x′ ± y′

x′′ ± y′′
x′′′ ± y′′′

• Sampling can be done by 1. sampling the last
coordinates wrt. GSO basis and 2. lifting to the
full lattice using Babai

• Sieving searches for pairs x,y ∈ L s.t. ‖x± y‖
is small

• Once found replace the longest vector in L with
x± y

• The next short x′ ± y′ replaces the current
longest on L

• Stop when “enough” short pairs are found

Runtime: |L|2. For |L| =
(
4
3

)n/2
, T = 20.415n

Nguyen-Vidick sieve

All sieving algorithms start by sampling lots of lattice vectors into
a list L and by sorting it.

L

x

y

x± y
x′ ± y′
x′′ ± y′′
x′′′ ± y′′′

• Sampling can be done by 1. sampling the last
coordinates wrt. GSO basis and 2. lifting to the
full lattice using Babai

• Sieving searches for pairs x,y ∈ L s.t. ‖x± y‖
is small

• Once found replace the longest vector in L with
x± y

• The next short x′ ± y′ replaces the current
longest on L

• Stop when “enough” short pairs are found

Runtime: |L|2. For |L| =
(
4
3

)n/2
, T = 20.415n

How to efficiently discard unpromising pairs, [Cha02, FBB+15, Duc18]

We spend most of the time testing if x± y is short.
Need to compute the scalar product |〈x , y〉| fast
Most scalar products are useless, leading to no new vectors.

0

v4
0 1

v1
0

1

v2
1 0 v3

0 1

x (1011)

y (1111)
1101⊕ 1111 = 0010

x (1100)

1100⊕ 1111 = 0011

Close vectors are likely to lie in the same half-space.
Quick test with XOR + Popcount. We implement this test for all sieves.

How to efficiently discard unpromising pairs, [Cha02, FBB+15, Duc18]

We spend most of the time testing if x± y is short.
Need to compute the scalar product |〈x , y〉| fast
Most scalar products are useless, leading to no new vectors.

0

v4
0 1

v1
0

1

v2
1 0 v3

0 1

x (1011)

y (1111)

1101⊕ 1111 = 0010

x (1100)

1100⊕ 1111 = 0011

Close vectors are likely to lie in the same half-space.
Quick test with XOR + Popcount. We implement this test for all sieves.

How to efficiently discard unpromising pairs, [Cha02, FBB+15, Duc18]

We spend most of the time testing if x± y is short.
Need to compute the scalar product |〈x , y〉| fast
Most scalar products are useless, leading to no new vectors.

0

v4
0 1

v1
0

1

v2
1 0 v3

0 1

x (1011)

y (1111)
1101⊕ 1111 = 0010

x (1100)

1100⊕ 1111 = 0011

Close vectors are likely to lie in the same half-space.
Quick test with XOR + Popcount. We implement this test for all sieves.

How to efficiently discard unpromising pairs, [Cha02, FBB+15, Duc18]

We spend most of the time testing if x± y is short.
Need to compute the scalar product |〈x , y〉| fast
Most scalar products are useless, leading to no new vectors.

0

v4
0 1

v1
0

1

v2
1 0 v3

0 1

x (1011)

y (1111)

1101⊕ 1111 = 0010

x (1100)

1100⊕ 1111 = 0011

Close vectors are likely to lie in the same half-space.
Quick test with XOR + Popcount. We implement this test for all sieves.

Part II

bjg1

bjg1= NV Sieve + Buckets

x

Bucket center x ∈ L
defines a region Bx

bjg1= NV Sieve + Buckets

x

y1

y2

y4

y6

y7

y8

y9

y10

y11

Bucket center x ∈ L
defines a region Bx

Bucketing phase
∀y ∈ L :

If 〈x , y〉 ≥ α :

If ‖x± y‖ small
reduce y

Else put y into Bx

bjg1= NV Sieve + Buckets

x
y2

y8

y9

Bucket center x ∈ L
defines a region Bx

Bucketing phase
∀y ∈ L :

If 〈x , y〉 ≥ α :

If ‖x± y‖ small
reduce y

Else put y into Bx

Sieve the bucket

∀y ∈ Bx :
Find y′ ∈ Bx s.t.
‖y ± y′‖ – small

bjg1 strategy:

choose x randomly from L

for 20.142n centres to find all pairs:

T = 20.349n, M = 20.2075n

BGDL strategy:

choose x from a spherical code

T = 20.292n, M = 20.2075n

decoding random spherical code
introduces overheads

bjg1= NV Sieve + Buckets

x
y2

y8

y9

Bucket center x ∈ L
defines a region Bx

Bucketing phase
∀y ∈ L :

If 〈x , y〉 ≥ α :

If ‖x± y‖ small
reduce y

Else put y into Bx

Sieve the bucket

∀y ∈ Bx :
Find y′ ∈ Bx s.t.
‖y ± y′‖ – small

bjg1 strategy:

choose x randomly from L

for 20.142n centres to find all pairs:

T = 20.349n, M = 20.2075n

BGDL strategy:

choose x from a spherical code

T = 20.292n, M = 20.2075n

decoding random spherical code
introduces overheads

bjg1= NV Sieve + Buckets

x
y2

y8

y9

Bucket center x ∈ L
defines a region Bx

Bucketing phase
∀y ∈ L :

If 〈x , y〉 ≥ α :

If ‖x± y‖ small
reduce y

Else put y into Bx

Sieve the bucket

∀y ∈ Bx :
Find y′ ∈ Bx s.t.
‖y ± y′‖ – small

bjg1 strategy:

choose x randomly from L

for 20.142n centres to find all pairs:

T = 20.349n, M = 20.2075n

BGDL strategy:

choose x from a spherical code

T = 20.292n, M = 20.2075n

decoding random spherical code
introduces overheads

Parallelized bjg1

• Parallelization is done by having different threads work with
different buckets.

• Reading the database of vectors is lock free

• Insertions of new shorter vectors into the global list are
delayed and are executed in batches

• Sorting is complicated.

Part III

triple_sieve

Triple sieve

Motivation: reduce 20.2075n memory

L

x

y

z

x± y ± z

• 3-Sieve searches for triples x,y, z ∈ L s.t.
‖x± y ± z‖ is small

• Once found replace the longest vector in L with
x± y ± z

• Stop when “enough” short pairs are found

Memory optimal regime: M = 20.1887n, T = 20.3588n

Generalises to k-Sieve but taking k > 3 seems impractical

triple_sieve vs. bjg1

x
y2

y8

y9

bgj1

Bucketing phase
∀y ∈ L :

If 〈x , y〉 ≥ α :

If ‖x± y‖ small
reduce y

Else put y into Bx

Sieve the bucket

∀ pairs y,y′, ∈ Bx :

If ‖y ± y′‖ – small
perform the reduction

triple_sieve vs. bjg1

x
y2

y6y8

y9

triple_sieve

Bucketing phase
∀y ∈ L :

If 〈x , y〉 ≥ α′ :
If ‖x± y‖ small
reduce y

Else put y into Bx

Sieve the bucket
∀ pairs y,y′, ∈ Bx :

If ‖y ± y′‖ – small
perform the reduction

Else if ‖x± y ± y′‖ – small
perform the reduction

· tuning the parameters allows to

interpolate btw. 2-Sieve and 3-Sieve

· Smaller list =⇒ more 3-reductions

· Larger list =⇒ more 2-reductions

triple_sieve vs. bjg1

x
y2

y6y8

y9

triple_sieve

Bucketing phase
∀y ∈ L :

If 〈x , y〉 ≥ α′ :
If ‖x± y‖ small
reduce y

Else put y into Bx

Sieve the bucket
∀ pairs y,y′, ∈ Bx :

If ‖y ± y′‖ – small
perform the reduction

Else if ‖x± y ± y′‖ – small
perform the reduction

· tuning the parameters allows to

interpolate btw. 2-Sieve and 3-Sieve

· Smaller list =⇒ more 3-reductions

· Larger list =⇒ more 2-reductions

triple_sieve vs. bjg1

x
y2

y6y8

y9

triple_sieve

Bucketing phase
∀y ∈ L :

If 〈x , y〉 ≥ α′ :
If ‖x± y‖ small
reduce y

Else put y into Bx

Sieve the bucket
∀ pairs y,y′, ∈ Bx :

If ‖y ± y′‖ – small
perform the reduction

Else if ‖x± y ± y′‖ – small
perform the reduction

· tuning the parameters allows to

interpolate btw. 2-Sieve and 3-Sieve

· Smaller list =⇒ more 3-reductions

· Larger list =⇒ more 2-reductions

Time-memory trade-offs

With the same |L|, triple_sieve finds more reductions than
2-Sieve. It allows to decrease |L|.

1.3 1.305 1.31 1.315 1.32 1.325 1.33 1.335

104.5

105

|L|n/2

C
P
U
ti
m
e
(s
ec
on
ds
)

algorithm triple_sieve
run on n = 100

The right most point corresponds to the 2-Sieve memory regime
The left most – to the 3-Sieve memory regime

Parallelized triple_sieve

• Again parallelization is done by having different threads work
with different buckets.

• Reading the database of vectors is lock free

• Insertions of new shorter vectors into the global list are
delayed and are executed in batches

Part IV

The G6K framework

The G6K framework

G6K includes previous and introduces new improvements for sieving:

1. Progressive sieving. [Duc18,ML18]: iteratively sieve in
projected sublattices of smaller dimension

2. Dimensions for free, [Duc18]: sieve in a projected sublattice,
Babai-lift short vectors

3. BKZ with sieving: recycle short vectors from one projected
lattice to another (do not start from scratch!)

Sources of improvements:

• Sieve outputs not only one short vector but many short
vectors

• Sieving tries to improve the “quality” of a basis rather than
just finding a shortest vector

• “Quality” - length of Gram-Schmidt vectors

The G6K framework

G6K includes previous and introduces new improvements for sieving:

1. Progressive sieving. [Duc18,ML18]: iteratively sieve in
projected sublattices of smaller dimension

2. Dimensions for free, [Duc18]: sieve in a projected sublattice,
Babai-lift short vectors

3. BKZ with sieving: recycle short vectors from one projected
lattice to another (do not start from scratch!)

Sources of improvements:

• Sieve outputs not only one short vector but many short
vectors

• Sieving tries to improve the “quality” of a basis rather than
just finding a shortest vector

• “Quality” - length of Gram-Schmidt vectors

Projected lattice

0

b2

b1

L1:1L1:1

b1 = b?1

b?2b
?
2

L2:2

· b1, . . . ,bn – basis of L
· L1:j is the lattice spanned by b1, . . . ,bj· L1:j is the lattice spanned by b1, . . . ,bj .

· b?i is the projection of bi on L⊥1:i−1 (GSO)
· Li:j is the orthogonal projection of L1:j on L⊥1:i−1.

Projected lattice

0

b2

b1

L1:1L1:1

b1 = b?1

b?2b
?
2

L2:2

· b1, . . . ,bn – basis of L
· L1:j is the lattice spanned by b1, . . . ,bj· L1:j is the lattice spanned by b1, . . . ,bj .
· b?i is the projection of bi on L⊥1:i−1 (GSO)
· Li:j is the orthogonal projection of L1:j on L⊥1:i−1.

Non black-box sieving in G6K

• Sieve in a projected sublattice Li:j of rank j − i+ 1 . The
output a list L of short vectors.

• Short vectors can be lifted from Li:j to Li′:j for i′ < i.

• Particularly short lifts are inserted into the current basis

• Move from Li:j to Li′:j′ using the set of instructions

– Lifting: moves from Li:j to Li−1:j
– Inclusion: moves from Li:j to Li:j+1

– Projection: moves from Li:j to Li+1:j

Non black-box sieving in G6K
With this set of instructions

– Lifting: moves from Li:j to Li−1:j
– Inclusion: moves from Li:j to Li:j+1

– Projection: moves from Li:j to Li+1:j

G6K implements

1. Progressive sieving, [Duc18,ML18] iteratively sieve in Li:n for
decreasing i’s.

2. Dimensions for free, [Duc18]: sieve in Lf :n until enough short
vectors are found, lift to L1:n = L.
For f = O(n/ lg n), lifts include the shortest vector.

3. Pumping: progressive sieve from Ln:n to Li:n, insert n− i+ 1
short vectors.

4. Workout: execute Pump for decreasing i’s.

5. BKZ

Non black-box sieving in G6K
With this set of instructions

– Lifting: moves from Li:j to Li−1:j
– Inclusion: moves from Li:j to Li:j+1

– Projection: moves from Li:j to Li+1:j

G6K implements

1. Progressive sieving, [Duc18,ML18] iteratively sieve in Li:n for
decreasing i’s.

2. Dimensions for free, [Duc18]: sieve in Lf :n until enough short
vectors are found, lift to L1:n = L.
For f = O(n/ lg n), lifts include the shortest vector.

3. Pumping: progressive sieve from Ln:n to Li:n, insert n− i+ 1
short vectors.

4. Workout: execute Pump for decreasing i’s.

5. BKZ

Non black-box sieving in G6K
With this set of instructions

– Lifting: moves from Li:j to Li−1:j
– Inclusion: moves from Li:j to Li:j+1

– Projection: moves from Li:j to Li+1:j

G6K implements

1. Progressive sieving, [Duc18,ML18] iteratively sieve in Li:n for
decreasing i’s.

2. Dimensions for free, [Duc18]: sieve in Lf :n until enough short
vectors are found, lift to L1:n = L.
For f = O(n/ lg n), lifts include the shortest vector.

3. Pumping: progressive sieve from Ln:n to Li:n, insert n− i+ 1
short vectors.

4. Workout: execute Pump for decreasing i’s.

5. BKZ

Non black-box sieving in G6K
With this set of instructions

– Lifting: moves from Li:j to Li−1:j
– Inclusion: moves from Li:j to Li:j+1

– Projection: moves from Li:j to Li+1:j

G6K implements

1. Progressive sieving, [Duc18,ML18] iteratively sieve in Li:n for
decreasing i’s.

2. Dimensions for free, [Duc18]: sieve in Lf :n until enough short
vectors are found, lift to L1:n = L.
For f = O(n/ lg n), lifts include the shortest vector.

3. Pumping: progressive sieve from Ln:n to Li:n, insert n− i+ 1
short vectors.

4. Workout: execute Pump for decreasing i’s.

5. BKZ

Non black-box sieving in G6K
With this set of instructions

– Lifting: moves from Li:j to Li−1:j
– Inclusion: moves from Li:j to Li:j+1

– Projection: moves from Li:j to Li+1:j

G6K implements

1. Progressive sieving, [Duc18,ML18] iteratively sieve in Li:n for
decreasing i’s.

2. Dimensions for free, [Duc18]: sieve in Lf :n until enough short
vectors are found, lift to L1:n = L.
For f = O(n/ lg n), lifts include the shortest vector.

3. Pumping: progressive sieve from Ln:n to Li:n, insert n− i+ 1
short vectors.

4. Workout: execute Pump for decreasing i’s.

5. BKZ

BKZ (simplified)

L[` ; r] - orthogonal projection of L1:r on L⊥1:`−1

Input: B = (bi), β

for k = 2 . . . n− 1 do
b ← SVP(L[k : min{k+β−1,n}])

end for
if b is “short enough” then

Insert b into B
Remove lin. dependencies

end if

b1 b2 b3 ... bβ bβ+1 ... bn


SVP

BKZ with Sieving

L[`:r] - orthogonal projection of L1:r on L⊥1:`−1

Input: B = (bi), β

for k = 2 . . . n− 1 do
Sieve(L[k;k+1])
Sieve(L[k;k+2])
. . .
Sieve(L[k;k+β])

end for
Update B with short bi’s from L[k;k+β]

L[k;k+i] ⊂ L[k;k+j]

BKZ with Sieving

L[`:r] - orthogonal projection of L1:r on L⊥1:`−1

Input: B = (bi), β

for k = 2 . . . n− 1 do
Sieve(L[k;k+1])
Sieve(L[k;k+2])
. . .
Sieve(L[k;k+β])

end for
Update B with short bi’s from L[k;k+β]

L[k;k+β]

short

k ++

L[k;k+β]

short-ish

The last part

Experimental results

Experimental results (bgj1_1)

SVP Hermite Sieve Total Memory
dim factor max dim Wall time CPU time usage

155 1.00803 127 14d 16h 1056d 246 GiB
153 1.02102 123 11d 15h 911d 139 GiB
151 1.04411 124 11d 19h 457.5d 160 GiB
149 0.98506 117 60h 7m 4.66kh 59 GiB
147 1.03863 118 123h 29m 4.79kh 67.0 GiB
145 1.04267 114 39h 3m 1496h 37.7 GiB

On various machines with a lot of RAM (256 or 512 GiB).
The current record due to L. Ducas, M. Stevens, W. van
Woerden: dim = 157

Implementation

The G6K is implemented as a C++ and Python library and
is open-source.

https://github.com/fplll/g6k

The paper is available at

https://eprint.iacr.org/2019/089

Thank you!
Q?

https://github.com/fplll/g6k
https://eprint.iacr.org/2019/089

Implementation

The G6K is implemented as a C++ and Python library and
is open-source.

https://github.com/fplll/g6k

The paper is available at

https://eprint.iacr.org/2019/089

Thank you!
Q?

https://github.com/fplll/g6k
https://eprint.iacr.org/2019/089

References

• [BDGL16] A. Becker, L. Ducas, N. Gama, T. Laarhoven. New directions
in nearest neighbor searching with applications to lattice sieving.

• [BGJ15] A. Becker,N. Gama, A. Joux. Speeding-up lattice sieving
without increasing the memory, using sub-quadratic nearest neighbor
search.

• [Cha02] M. Charikar. Similarity estimation techniques from rounding
algorithms.

• [Duc18] L. Ducas, Shortest vector from lattice sieving: A few
dimensions for free.

• [FBB+15] R. Fitzpatrick, C.H.Bischof, J. Buchmann, O.Dagdelen,
F.Göpfert, A. Mariano, and B. Yang, Tuning GaussSieve for speed.

• [HKL18] G. Herold, E. Kirshanova, T. Laarhoven. Speed-ups and
time-memory trade-offs for tuple lattice sieving.

• [NV08] P. Nguyen, T. Vidick. Sieve algorithms for the shortest vector
problem are practical.

