Instructors:
Where: Amphi B, Monod
When: Tuesdays, 15h45-17h45
Evaluation: 50% scribe + 50% article presentation
Template: Please use this template for your scribe
Prerequisites (advisable but not mandatory):
Reading:
Week | Class Topic | Sources | Scribe | |
---|---|---|---|---|
11.09 | The subset sum problem. Schroeppel-Shamir algorithm | N.Howgrave-Graham, A.Joux New Generic Algorithms for Hard Knapsacks | Lecture 1 | |
18.09 | The k-list problem. An algorithm for dense subset sum | D.Wagner A generalized birthday problem V.Lyubashevsky On Random High Density Subset Sums |
Lecture 2 | |
25.09 | The Learning Parity with Noise (LPN) problem. The BKW algorithm for LPN. | A.Blum, A.Kalai, H.Wasserman Noise-Tolerant Learning, the Parity Problem, and the Statistical Query Model | Lecture 3 | |
02.10 | NO LECTURE | |||
09.10 | NO LECTURE | |||
17.10 | Information Set Decoding. The representation technique | A. May, A. Meurer, A. Thomae Decoding Random Linear Codes in \softO(2^{0.054n}) | Lecture 4 | |
23.10 | Euclidean lattices. An algorithm for low density subset sum | M. J. Coster, B. A. LaMacchia, A. M. Odlyzko, C. P. Schnorr An Improved Low-Density Subset Sum Algorithm | Lecture 5 | |
24.10 | Coppersmith method (univariate) | D. Coppersmith Small Solutions to Polynomial Equations, and Low Exponent RSA Vulnerabilities | Lecture 6 | |
30.10 | VACATIONS | |||
06.11 | Coppersmith method (bivariate) | D. Coppersmith Finding a Small Root of a Bivariate Integer Equation; Factoring with High Bits Known | Lecture 7 | |
13.11 | Research School | |||
20.11 | Integer Factoring Algorithms I | Deterministic factoring, Pollard-rho, (p-1) Pollard | Lecture 8 | |
27.11 | Research School | |||
04.12 | Integer Factoring Algorithms II | (p+1) Method, ECM, Congruence-based methods (Dixon, quadratic sieve) | Lecture 9 | |
11.12 | The Dlog Problem I | Lecture 10 | ||
18.12 | The Dlog Problem II | Lecture 11 |