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We’ve looked at

I. Symmetric primitives:

• Pseudo random generators
• Stream ciphers
• Block ciphers
• MACs
• Hash functions
• Authenticated Encryption (AEAD)

II. Asymmetric primitives:

• Key Exchange
• Signature

The combination Key Exchange + Signature + AEAD rocks.



Part I

TLS



TLS: Transport Layer Security

TLS – protocol for establishing and maintaining a secure
connection connection between a client and a server over the
Internet.

I. SSL = Secure Socket Layer
• SSLv1 (1994) — unpublished
• SSLv2 (1995) — broken

• SSLv3 (1996) — supported

II. TLS = Transport Layer Security
• TLS 1.0 (1999) — RFC 2246
• TLS 1.1 (2006) — RFC 4346
• TLS 1.2 (2008) — RFC 5246

• TLS 1.3 (2018) — RFC 8448

NOT TO BE USED

IETF Standards

RFC = Request for Comments
IETF = Internet Engineering Task Force
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High level structure of TLS

Client Phase 1 Handshake Server
choose primitives, params

authentication (at least server’s)
common key derivation

↓ k
Phase 2 TLS record protocol

AEAD to encrypt data under the key k

TLS lives in the TCP (transport layer), i.e., it assumes that
packets arrive in order!
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When TLS happens

HTTPS (Application)
T
LS

Handshake Encryption ON Alert
App. data
protocol

Record protocol

TCP



TLS Handshake

Client Server

pkc = ga, Nonce Nc, offer

offer: list of client’s cipher suits 1. chooses one cipher suit
(Enc. scheme, hash)
2. Computes kshared = gab

ksh - server enc. key
ksm - server mac keypks = gb, Nonce Ns, mode
kch - client enc. key

mode: chosen cipher suits kcm - client mac key
Computes kshared = gab

ksh, ksm, kch, kcm

c1 = Enc(ksh, Cert. request)

c2 = Enc(ksh, Cert. Server)

c3 = Enc(ksh, Sign(transcript))

c4 = Enc(ksh,MAC(ksm, transcript))

c5 = Enc(kch, Cert. Client)

(kc→s, ks→c) = H(transcript) c6 = Enc(kch, Sign(transcript)) (kc→s, ks→c) = H( transcript)

c7 = Enc(kch,MAC(kcm, transcript))
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TLS Record Layer

Data = [m1, . . . ,ms]

Client Server
kc→s kc→s

ks→c ks→c

[Meta data|| mi || Nonce]︸ ︷︷ ︸
AES-GCM-AEAD(kc→s)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→



Security and features

• Alert protocol is responsible for handling errors, warnings and
session termination

• Security of TLS 1.3 is supported by strong analysis

• Update traffic keys feature: upon sending a KeyUpdate
message Client and Server update kc→s, ks→c

• Pre-shared key handshake: more efficient Handshake Phase
due to earlier sessions

• Forward secrecy: if an adversary compromises shared keys,
the previous communication remains secure



Cipher Suites in TLS 1.3

Key Exchange Certificates Sym. encryption Hash

ECDHE ECDSA AES_256_GCM (H)SHA_384

DHE RSA CHACHA20_Poly1350 (H)SHA_256

RSA AES_128_GCM (H)SHA1

AES_256_CBC

AES_128_CBC

3DES_CBC



Cipher Suite Name Decoding

TLS 1.2

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

protocol name

key exchange

authentication

sym. encryption

MAC

TLS 1.3 default suits:

TLS_AES_256_GCM_SHA384

TLS_CHACHA20_POLY1305_SHA256

TLS_AES_128_GCM_SHA256



Test your browser / server

Use

https://www.ssllabs.com/index.html

for a good SSL/TLS coverage

Or

https://tls13.ulfheim.net/

for an illustrated TLS Connection

https://www.ssllabs.com/index.html
https://tls13.ulfheim.net/


Part II

Secure Messaging



Secure Messaging

A Secure Messaging (SM) allow two parties to communicate with
each other with the following security conditions being satisfied:

• Correctness

• Privacy: attacker obtains no information about the messages sent
unless a party is compromised

• Authenticity: the attacker cannot change, duplicate or inject
messages

• Immediate decryption

• Message-loss resilience: if a message is lost, communication
continues

• Forward secrecy: all messages exchanged before a compromise
remain hidden to an attacker

• Post-compromise security: the parties can recover after a
compromise
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Secure Messaging protocol: Signal

The Signal Protocol, designed by Open Whisper Systems, is an
example of Secure Messaging.

• deployed in many apps like WhatsApp, Facebook Messenger, Skype

• every message is encrypted and authenticated using a fresh
symmetric key

• satisfies the above security conditions

Description of Signal:
https://signal.org/docs/specifications/doubleratchet/doubleratchet.pdf

It’s analysis: https://eprint.iacr.org/2018/1037.pdf

https://signal.org/docs/specifications/doubleratchet/doubleratchet.pdf
https://eprint.iacr.org/2018/1037.pdf


Primitives for SM Protocols

Correctness
Privacy

Authenticity
Immediate decryption
Message-loss resilience

Forward security


AEAD (symmetric primitive)

AEAD – Authenticated Encryption with Associated Data

Post-compromise security
}
CKA (asymmetric primitive)

CKA – Continuous Key Agreement



Signal: high level symmetric part

A B
Sender ← kshared → Receiver

sA,0 ← InitSender(k) sB,0 ← InitReceiver(k)

sA,1, c1 ← Send(m1)
c1−−−→

sA,2, c2 ← Send(m2)
c2−−−→

sB,1,m1 ← Receive(c1)
sB,2,m2 ← Receive(c2)

...

• think about Send as of encryption, Receive as of decryption

• sA,i – A’s i− th state

• sB,i – B’s i− th state

• the states should remain secure

• ciphertexts ci may not come to B in order!
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Signal: AEAD + PRG

Let Enc(),Dec() be encryption/decryption procedures of AEAD (see Lec. 7)

G : {0, 1}n → {0, 1}2n − cryptographic pseudo-random generator (see Lec. 2)

A B

G
w0 = kshared

w1 K1 m1 = Dec(K1,1, c1)

G
w1

w3

m2 = Dec(K2,2, c2)K2

G
w2

w2

m3 = Dec(K3,3, c3)K3
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Signal: asymmetric part
How to get kshared?

You know the answer: use Key Exchange!

Signal is using Continuous Key Exchange based on Diffie-Hellman.
A B

x1
gx1

−−−−−−−→
gx2

←−−−−−−− x2

gx1x2 gx1x2

x3
gx3

−−−−−−−→
gx2x3 gx2x3

gx4

←−−−−−−− x4

gx3x4 gx3x4

...

• At time i the shared key is gxixi−1

• A shared key is generated each time a party switches from
Receiver to Sender

• If at some point gxixi−1 is compromised (attacker knows xi), the
parties recover privacy within two rounds.
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The last slide

This is the end of the lectures!

If you want to work on crypto, here is the list of potential projects/thesis
topics:

https://crypto-kantiana.com/thesis_topics.html

Stay healthy and hope to see you soon!

https://crypto-kantiana.com/thesis_topics.html
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