
Cryptography in Real World protocols

Elena Kirshanova

Course “Information and Network Security”
Lecture 10

14 мая 2020 г.

We’ve looked at

I. Symmetric primitives:

• Pseudo random generators
• Stream ciphers
• Block ciphers
• MACs
• Hash functions
• Authenticated Encryption (AEAD)

II. Asymmetric primitives:

• Key Exchange
• Signature

The combination Key Exchange + Signature + AEAD rocks.

Part I

TLS

TLS: Transport Layer Security

TLS – protocol for establishing and maintaining a secure
connection connection between a client and a server over the
Internet.

I. SSL = Secure Socket Layer
• SSLv1 (1994) — unpublished
• SSLv2 (1995) — broken

• SSLv3 (1996) — supported

II. TLS = Transport Layer Security
• TLS 1.0 (1999) — RFC 2246
• TLS 1.1 (2006) — RFC 4346
• TLS 1.2 (2008) — RFC 5246

• TLS 1.3 (2018) — RFC 8448

NOT TO BE USED

IETF Standards

RFC = Request for Comments
IETF = Internet Engineering Task Force

TLS: Transport Layer Security

TLS – protocol for establishing and maintaining a secure
connection connection between a client and a server over the
Internet.

I. SSL = Secure Socket Layer
• SSLv1 (1994) — unpublished
• SSLv2 (1995) — broken

• SSLv3 (1996) — supported

II. TLS = Transport Layer Security
• TLS 1.0 (1999) — RFC 2246
• TLS 1.1 (2006) — RFC 4346
• TLS 1.2 (2008) — RFC 5246

• TLS 1.3 (2018) — RFC 8448

NOT TO BE USED

IETF Standards

RFC = Request for Comments
IETF = Internet Engineering Task Force

High level structure of TLS

Client Phase 1 Handshake Server
choose primitives, params

authentication (at least server’s)
common key derivation

↓ k
Phase 2 TLS record protocol

AEAD to encrypt data under the key k

TLS lives in the TCP (transport layer), i.e., it assumes that
packets arrive in order!

High level structure of TLS

Client Phase 1 Handshake Server
choose primitives, params

authentication (at least server’s)
common key derivation

↓ k
Phase 2 TLS record protocol

AEAD to encrypt data under the key k

TLS lives in the TCP (transport layer), i.e., it assumes that
packets arrive in order!

When TLS happens

HTTPS (Application)
T
LS

Handshake Encryption ON Alert
App. data
protocol

Record protocol

TCP

TLS Handshake

Client Server

pkc = ga, Nonce Nc, offer

offer: list of client’s cipher suits 1. chooses one cipher suit
(Enc. scheme, hash)
2. Computes kshared = gab

ksh - server enc. key
ksm - server mac keypks = gb, Nonce Ns, mode
kch - client enc. key

mode: chosen cipher suits kcm - client mac key
Computes kshared = gab

ksh, ksm, kch, kcm

c1 = Enc(ksh, Cert. request)

c2 = Enc(ksh, Cert. Server)

c3 = Enc(ksh, Sign(transcript))

c4 = Enc(ksh,MAC(ksm, transcript))

c5 = Enc(kch, Cert. Client)

(kc→s, ks→c) = H(transcript) c6 = Enc(kch, Sign(transcript)) (kc→s, ks→c) = H(transcript)

c7 = Enc(kch,MAC(kcm, transcript))

TLS Handshake

Client Serverpkc = ga, Nonce Nc, offer

offer: list of client’s cipher suits

1. chooses one cipher suit
(Enc. scheme, hash)
2. Computes kshared = gab

ksh - server enc. key
ksm - server mac keypks = gb, Nonce Ns, mode
kch - client enc. key

mode: chosen cipher suits kcm - client mac key
Computes kshared = gab

ksh, ksm, kch, kcm

c1 = Enc(ksh, Cert. request)

c2 = Enc(ksh, Cert. Server)

c3 = Enc(ksh, Sign(transcript))

c4 = Enc(ksh,MAC(ksm, transcript))

c5 = Enc(kch, Cert. Client)

(kc→s, ks→c) = H(transcript) c6 = Enc(kch, Sign(transcript)) (kc→s, ks→c) = H(transcript)

c7 = Enc(kch,MAC(kcm, transcript))

TLS Handshake

Client Serverpkc = ga, Nonce Nc, offer

offer: list of client’s cipher suits 1. chooses one cipher suit
(Enc. scheme, hash)

2. Computes kshared = gab

ksh - server enc. key
ksm - server mac keypks = gb, Nonce Ns, mode
kch - client enc. key

mode: chosen cipher suits kcm - client mac key
Computes kshared = gab

ksh, ksm, kch, kcm

c1 = Enc(ksh, Cert. request)

c2 = Enc(ksh, Cert. Server)

c3 = Enc(ksh, Sign(transcript))

c4 = Enc(ksh,MAC(ksm, transcript))

c5 = Enc(kch, Cert. Client)

(kc→s, ks→c) = H(transcript) c6 = Enc(kch, Sign(transcript)) (kc→s, ks→c) = H(transcript)

c7 = Enc(kch,MAC(kcm, transcript))

TLS Handshake

Client Serverpkc = ga, Nonce Nc, offer

offer: list of client’s cipher suits 1. chooses one cipher suit
(Enc. scheme, hash)
2. Computes kshared = gab

ksh - server enc. key
ksm - server mac keypks = gb, Nonce Ns, mode
kch - client enc. key

mode: chosen cipher suits kcm - client mac key

Computes kshared = gab

ksh, ksm, kch, kcm

c1 = Enc(ksh, Cert. request)

c2 = Enc(ksh, Cert. Server)

c3 = Enc(ksh, Sign(transcript))

c4 = Enc(ksh,MAC(ksm, transcript))

c5 = Enc(kch, Cert. Client)

(kc→s, ks→c) = H(transcript) c6 = Enc(kch, Sign(transcript)) (kc→s, ks→c) = H(transcript)

c7 = Enc(kch,MAC(kcm, transcript))

TLS Handshake

Client Serverpkc = ga, Nonce Nc, offer

offer: list of client’s cipher suits 1. chooses one cipher suit
(Enc. scheme, hash)
2. Computes kshared = gab

ksh - server enc. key
ksm - server mac keypks = gb, Nonce Ns, mode
kch - client enc. key

mode: chosen cipher suits kcm - client mac key
Computes kshared = gab

ksh, ksm, kch, kcm

c1 = Enc(ksh, Cert. request)

c2 = Enc(ksh, Cert. Server)

c3 = Enc(ksh, Sign(transcript))

c4 = Enc(ksh,MAC(ksm, transcript))

c5 = Enc(kch, Cert. Client)

(kc→s, ks→c) = H(transcript) c6 = Enc(kch, Sign(transcript)) (kc→s, ks→c) = H(transcript)

c7 = Enc(kch,MAC(kcm, transcript))

TLS Handshake

Client Serverpkc = ga, Nonce Nc, offer

offer: list of client’s cipher suits 1. chooses one cipher suit
(Enc. scheme, hash)
2. Computes kshared = gab

ksh - server enc. key
ksm - server mac keypks = gb, Nonce Ns, mode
kch - client enc. key

mode: chosen cipher suits kcm - client mac key
Computes kshared = gab

ksh, ksm, kch, kcm

c1 = Enc(ksh, Cert. request)

c2 = Enc(ksh, Cert. Server)

c3 = Enc(ksh, Sign(transcript))

c4 = Enc(ksh,MAC(ksm, transcript))

c5 = Enc(kch, Cert. Client)

(kc→s, ks→c) = H(transcript) c6 = Enc(kch, Sign(transcript)) (kc→s, ks→c) = H(transcript)

c7 = Enc(kch,MAC(kcm, transcript))

TLS Handshake

Client Serverpkc = ga, Nonce Nc, offer

offer: list of client’s cipher suits 1. chooses one cipher suit
(Enc. scheme, hash)
2. Computes kshared = gab

ksh - server enc. key
ksm - server mac keypks = gb, Nonce Ns, mode
kch - client enc. key

mode: chosen cipher suits kcm - client mac key
Computes kshared = gab

ksh, ksm, kch, kcm

c1 = Enc(ksh, Cert. request)

c2 = Enc(ksh, Cert. Server)

c3 = Enc(ksh, Sign(transcript))

c4 = Enc(ksh,MAC(ksm, transcript))

c5 = Enc(kch, Cert. Client)

(kc→s, ks→c) = H(transcript) c6 = Enc(kch, Sign(transcript)) (kc→s, ks→c) = H(transcript)

c7 = Enc(kch,MAC(kcm, transcript))

TLS Record Layer

Data = [m1, . . . ,ms]

Client Server
kc→s kc→s

ks→c ks→c

[Meta data|| mi || Nonce]︸ ︷︷ ︸
AES-GCM-AEAD(kc→s)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Security and features

• Alert protocol is responsible for handling errors, warnings and
session termination

• Security of TLS 1.3 is supported by strong analysis

• Update traffic keys feature: upon sending a KeyUpdate
message Client and Server update kc→s, ks→c

• Pre-shared key handshake: more efficient Handshake Phase
due to earlier sessions

• Forward secrecy: if an adversary compromises shared keys,
the previous communication remains secure

Cipher Suites in TLS 1.3

Key Exchange Certificates Sym. encryption Hash

ECDHE ECDSA AES_256_GCM (H)SHA_384

DHE RSA CHACHA20_Poly1350 (H)SHA_256

RSA AES_128_GCM (H)SHA1

AES_256_CBC

AES_128_CBC

3DES_CBC

Cipher Suite Name Decoding

TLS 1.2

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

protocol name

key exchange

authentication

sym. encryption

MAC

TLS 1.3 default suits:

TLS_AES_256_GCM_SHA384

TLS_CHACHA20_POLY1305_SHA256

TLS_AES_128_GCM_SHA256

Test your browser / server

Use

https://www.ssllabs.com/index.html

for a good SSL/TLS coverage

Or

https://tls13.ulfheim.net/

for an illustrated TLS Connection

https://www.ssllabs.com/index.html
https://tls13.ulfheim.net/

Part II

Secure Messaging

Secure Messaging

A Secure Messaging (SM) allow two parties to communicate with
each other with the following security conditions being satisfied:

• Correctness

• Privacy: attacker obtains no information about the messages sent
unless a party is compromised

• Authenticity: the attacker cannot change, duplicate or inject
messages

• Immediate decryption

• Message-loss resilience: if a message is lost, communication
continues

• Forward secrecy: all messages exchanged before a compromise
remain hidden to an attacker

• Post-compromise security: the parties can recover after a
compromise

Secure Messaging

A Secure Messaging (SM) allow two parties to communicate with
each other with the following security conditions being satisfied:
• Correctness

• Privacy: attacker obtains no information about the messages sent
unless a party is compromised

• Authenticity: the attacker cannot change, duplicate or inject
messages

• Immediate decryption

• Message-loss resilience: if a message is lost, communication
continues

• Forward secrecy: all messages exchanged before a compromise
remain hidden to an attacker

• Post-compromise security: the parties can recover after a
compromise

Secure Messaging protocol: Signal

The Signal Protocol, designed by Open Whisper Systems, is an
example of Secure Messaging.

• deployed in many apps like WhatsApp, Facebook Messenger, Skype

• every message is encrypted and authenticated using a fresh
symmetric key

• satisfies the above security conditions

Description of Signal:
https://signal.org/docs/specifications/doubleratchet/doubleratchet.pdf

It’s analysis: https://eprint.iacr.org/2018/1037.pdf

https://signal.org/docs/specifications/doubleratchet/doubleratchet.pdf
https://eprint.iacr.org/2018/1037.pdf

Primitives for SM Protocols

Correctness
Privacy

Authenticity
Immediate decryption
Message-loss resilience

Forward security


AEAD (symmetric primitive)

AEAD – Authenticated Encryption with Associated Data

Post-compromise security
}
CKA (asymmetric primitive)

CKA – Continuous Key Agreement

Signal: high level symmetric part

A B
Sender ← kshared → Receiver

sA,0 ← InitSender(k) sB,0 ← InitReceiver(k)

sA,1, c1 ← Send(m1)
c1−−−→

sA,2, c2 ← Send(m2)
c2−−−→

sB,1,m1 ← Receive(c1)
sB,2,m2 ← Receive(c2)

...

• think about Send as of encryption, Receive as of decryption

• sA,i – A’s i− th state

• sB,i – B’s i− th state

• the states should remain secure

• ciphertexts ci may not come to B in order!

Signal: high level symmetric part

A B
Sender ← kshared → Receiver

sA,0 ← InitSender(k) sB,0 ← InitReceiver(k)

sA,1, c1 ← Send(m1)
c1−−−→

sA,2, c2 ← Send(m2)
c2−−−→

sB,1,m1 ← Receive(c1)
sB,2,m2 ← Receive(c2)

...

• think about Send as of encryption, Receive as of decryption

• sA,i – A’s i− th state

• sB,i – B’s i− th state

• the states should remain secure

• ciphertexts ci may not come to B in order!

Signal: high level symmetric part

A B
Sender ← kshared → Receiver

sA,0 ← InitSender(k) sB,0 ← InitReceiver(k)

sA,1, c1 ← Send(m1)
c1−−−→

sA,2, c2 ← Send(m2)
c2−−−→

sB,1,m1 ← Receive(c1)
sB,2,m2 ← Receive(c2)

...

• think about Send as of encryption, Receive as of decryption

• sA,i – A’s i− th state

• sB,i – B’s i− th state

• the states should remain secure

• ciphertexts ci may not come to B in order!

Signal: high level symmetric part

A B
Sender ← kshared → Receiver

sA,0 ← InitSender(k) sB,0 ← InitReceiver(k)

sA,1, c1 ← Send(m1)
c1−−−→

sA,2, c2 ← Send(m2)
c2−−−→

sB,1,m1 ← Receive(c1)
sB,2,m2 ← Receive(c2)

...

• think about Send as of encryption, Receive as of decryption

• sA,i – A’s i− th state

• sB,i – B’s i− th state

• the states should remain secure

• ciphertexts ci may not come to B in order!

Signal: AEAD + PRG

Let Enc(),Dec() be encryption/decryption procedures of AEAD (see Lec. 7)

G : {0, 1}n → {0, 1}2n − cryptographic pseudo-random generator (see Lec. 2)

A B

G
w0 = kshared

w1 K1 m1 = Dec(K1,1, c1)

G
w1

w3

m2 = Dec(K2,2, c2)K2

G
w2

w2

m3 = Dec(K3,3, c3)K3

Signal: AEAD + PRG

Let Enc(),Dec() be encryption/decryption procedures of AEAD (see Lec. 7)

G : {0, 1}n → {0, 1}2n − cryptographic pseudo-random generator (see Lec. 2)

A B

G
w0 = kshared

w1 K1 m1 = Dec(K1,1, c1)

G
w1

w3

m2 = Dec(K2,2, c2)K2

G
w2

w2

m3 = Dec(K3,3, c3)K3

Signal: AEAD + PRG

Let Enc(),Dec() be encryption/decryption procedures of AEAD (see Lec. 7)

G : {0, 1}n → {0, 1}2n − cryptographic pseudo-random generator (see Lec. 2)

A
B

All wi are erased when no further needed.

Signal: AEAD + PRG

Let Enc(),Dec() be encryption/decryption procedures of AEAD (see Lec. 7)

G : {0, 1}n → {0, 1}2n − cryptographic pseudo-random generator (see Lec. 2)

A
B

All wi are erased when no further needed.

Signal: asymmetric part
How to get kshared?

You know the answer: use Key Exchange!

Signal is using Continuous Key Exchange based on Diffie-Hellman.
A B

x1
gx1

−−−−−−−→
gx2

←−−−−−−− x2

gx1x2 gx1x2

x3
gx3

−−−−−−−→
gx2x3 gx2x3

gx4

←−−−−−−− x4

gx3x4 gx3x4

...

• At time i the shared key is gxixi−1

• A shared key is generated each time a party switches from
Receiver to Sender

• If at some point gxixi−1 is compromised (attacker knows xi), the
parties recover privacy within two rounds.

Signal: asymmetric part
How to get kshared? You know the answer: use Key Exchange!

Signal is using Continuous Key Exchange based on Diffie-Hellman.

A B

x1
gx1

−−−−−−−→
gx2

←−−−−−−− x2

gx1x2 gx1x2

x3
gx3

−−−−−−−→
gx2x3 gx2x3

gx4

←−−−−−−− x4

gx3x4 gx3x4

...

• At time i the shared key is gxixi−1

• A shared key is generated each time a party switches from
Receiver to Sender

• If at some point gxixi−1 is compromised (attacker knows xi), the
parties recover privacy within two rounds.

Signal: asymmetric part
How to get kshared? You know the answer: use Key Exchange!

Signal is using Continuous Key Exchange based on Diffie-Hellman.
A B

x1
gx1

−−−−−−−→
gx2

←−−−−−−− x2

gx1x2 gx1x2

x3
gx3

−−−−−−−→
gx2x3 gx2x3

gx4

←−−−−−−− x4

gx3x4 gx3x4

...

• At time i the shared key is gxixi−1

• A shared key is generated each time a party switches from
Receiver to Sender

• If at some point gxixi−1 is compromised (attacker knows xi), the
parties recover privacy within two rounds.

Signal: asymmetric part
How to get kshared? You know the answer: use Key Exchange!

Signal is using Continuous Key Exchange based on Diffie-Hellman.
A B

x1
gx1

−−−−−−−→
gx2

←−−−−−−− x2

gx1x2 gx1x2

x3
gx3

−−−−−−−→
gx2x3 gx2x3

gx4

←−−−−−−− x4

gx3x4 gx3x4

...

• At time i the shared key is gxixi−1

• A shared key is generated each time a party switches from
Receiver to Sender

• If at some point gxixi−1 is compromised (attacker knows xi), the
parties recover privacy within two rounds.

The last slide

This is the end of the lectures!

If you want to work on crypto, here is the list of potential projects/thesis
topics:

https://crypto-kantiana.com/thesis_topics.html

Stay healthy and hope to see you soon!

https://crypto-kantiana.com/thesis_topics.html

The last slide

This is the end of the lectures!

If you want to work on crypto, here is the list of potential projects/thesis
topics:

https://crypto-kantiana.com/thesis_topics.html

Stay healthy and hope to see you soon!

https://crypto-kantiana.com/thesis_topics.html

