Cryptography in Real World protocols

Elena Kirshanova

Course "Information and Network Security" Lecture 10 14 мая 2020 г.

We've looked at

I. Symmetric primitives:

- Pseudo random generators
- Stream ciphers
- Block ciphers
- MACs
- Hash functions
- Authenticated Encryption (AEAD)
- II. Asymmetric primitives:
 - Key Exchange
 - Signature

The combination Key Exchange + Signature + AEAD rocks.

Part I

TLS

TLS: Transport Layer Security

TLS – protocol for establishing and maintaining a secure connection connection between a client and a server over the Internet.

- I. SSL = Secure Socket Layer
 - SSLv1 (1994) unpublished
 - SSLv2 (1995) broken
 - SSLv3 (1996) supported

TLS: Transport Layer Security

TLS – protocol for establishing and maintaining a secure connection connection between a client and a server over the Internet.

- I. SSL = Secure Socket Layer
 - SSLv1 (1994) unpublished
 - SSLv2 (1995) broken
 - SSLv3 (1996) supported
- II. TLS = Transport Layer Security
 - TLS 1.0 (1999) RFC 2246
 - TLS 1.1 (2006) RFC 4346
 - TLS 1.2 (2008) RFC 5246
 - TLS 1.3 (2018) RFC 8448

RFC = Request for Comments IETF = Internet Engineering Task Force

NOT TO BE USED

IETF Standards

High level structure of TLS

Client

Phase 1 Handshake

Server

choose primitives, params authentication (at least server's) common key derivation High level structure of TLS

Client

Phase 1 Handshake

Server

choose primitives, params authentication (at least server's) common key derivation

$\downarrow k$

Phase 2 TLS record protocol AEAD to encrypt data under the key k

TLS lives in the TCP (transport layer), i.e., it assumes that packets arrive in order!

When TLS happens

Client

Server

Client

 $\mathsf{pk}_c = g^a$, Nonce N_c , offer

Server

offer: list of client's cipher suits

Client

 $\mathsf{pk}_c = g^a$, Nonce N_c , offer

offer: list of client's cipher suits

Server

1. chooses one cipher suit (Enc. scheme, hash)

Client

 $\mathsf{pk}_c = g^a$, Nonce N_c , offer

offer: list of client's cipher suits

$$\mathsf{pk}_s = g^b$$
, Nonce N_s , mode

mode: chosen cipher suits

Server

1. chooses one cipher suit (Enc. scheme, hash) 2. Computes $k_{shared} = g^{ab}$ k_{sh} - server enc. key k_{sm} - server mac key k_{ch} - client enc. key k_{cm} - client mac key

Client

 $\mathsf{pk}_c = g^a$, Nonce N_c , offer

offer: list of client's cipher suits

$$\mathsf{pk}_s = g^b$$
, Nonce N_s , mode

mode: chosen cipher suits

Computes $\frac{k_{\text{shared}}}{k_{\text{sh}}, k_{\text{sm}}, k_{\text{ch}}, k_{\text{cm}}} = g^{ab}$

Server

1. chooses one cipher suit (Enc. scheme, hash) 2. Computes $k_{shared} = g^{ab}$ k_{sh} - server enc. key k_{sm} - server mac key k_{ch} - client enc. key k_{cm} - client mac key

Client

 $\mathsf{pk}_c = g^a$, Nonce N_c , offer

offer: list of client's cipher suits

$$\mathsf{pk}_s = g^b$$
, Nonce N_s , mode

mode: chosen cipher suits

Server

1. chooses one cipher suit (Enc. scheme, hash) 2. Computes $k_{shared} = g^{ab}$ k_{sh} - server enc. key k_{sm} - server mac key k_{ch} - client enc. key k_{cm} - client mac key

Computes $\frac{k_{\text{shared}}}{k_{\text{sh}}, k_{\text{sm}}, k_{\text{ch}}, k_{\text{cm}}} = g^{ab}$

- $$\begin{split} c_1 &= \mathsf{Enc}(k_{\mathsf{sh}}, \; \mathsf{Cert. \; request}) \\ c_2 &= \mathsf{Enc}(k_{\mathsf{sh}}, \; \mathsf{Cert. \; Server}) \\ c_3 &= \mathsf{Enc}(k_{\mathsf{sh}}, \mathsf{Sign}(\mathsf{transcript})) \end{split}$$
- $c_4 = \mathsf{Enc}(k_{\mathsf{sh}}, \mathsf{MAC}(k_{\mathsf{sm}}, \mathsf{transcript}))$

Client

 $\mathsf{pk}_c = g^a$, Nonce N_c , offer

offer: list of client's cipher suits

$$\mathsf{pk}_s = g^b$$
, Nonce N_s , mode

mode: chosen cipher suits

Server

1. chooses one cipher suit (Enc. scheme, hash) 2. Computes $k_{shared} = g^{ab}$ k_{sh} - server enc. key k_{sm} - server mac key k_{ch} - client enc. key k_{cm} - client mac key

Computes $\frac{k_{\text{shared}}}{k_{\text{sh}}, k_{\text{sm}}, k_{\text{ch}}, k_{\text{cm}}} = g^{ab}$

$$\begin{split} c_1 &= \mathsf{Enc}(k_{\mathsf{sh}},\,\mathsf{Cert.\,request})\\ c_2 &= \mathsf{Enc}(k_{\mathsf{sh}},\,\mathsf{Cert.\,Server})\\ c_3 &= \mathsf{Enc}(k_{\mathsf{sh}},\mathsf{Sign}(\mathsf{transcript}))\\ c_4 &= \mathsf{Enc}(k_{\mathsf{sh}},\mathsf{MAC}(k_{\mathsf{sm}},\mathsf{transcript})) \end{split}$$

 $(k_{c \rightarrow s}, k_{s \rightarrow c}) = \mathcal{H}(\text{transcript})$

 $c_5 = \text{Enc}(k_{ch}, \text{ Cert. Client})$ $c_6 = \text{Enc}(k_{ch}, \text{Sign}(\text{transcript}))$ $c_7 = \text{Enc}(k_{ch}, \text{MAC}(k_{cm}, \text{transcript}))$

 $(k_{c \rightarrow s}, k_{s \rightarrow c}) = \mathcal{H}($ transcript)

TLS Record Layer

Security and features

- Alert protocol is responsible for handling errors, warnings and session termination
- Security of TLS 1.3 is supported by strong analysis
- Update traffic keys feature: upon sending a KeyUpdate message Client and Server update $k_{c \rightarrow s}, k_{s \rightarrow c}$
- Pre-shared key handshake: more efficient Handshake Phase due to earlier sessions
- Forward secrecy: if an adversary compromises shared keys, the *previous* communication remains secure

Cipher Suites in TLS 1.3

Key Exchange	Certificates	Sym. encryption	Hash
ECDHE	ECDSA	AES_256_GCM	(H)SHA_384
DHE	RSA	CHACHA20_Poly1350	(H)SHA_256
RSA		AES_128_GCM	(H)SHA1

AES_256_CBC AES_128_CBC

3DES_CBC

Cipher Suite Name Decoding

TLS 1.2

Test your browser / server

Use

https://www.ssllabs.com/index.html for a good SSL/TLS coverage

Or

https://tls13.ulfheim.net/ for an illustrated TLS Connection Part II

Secure Messaging

Secure Messaging

A Secure Messaging (SM) allow two parties to communicate with each other with the following security conditions being satisfied:

Secure Messaging

A Secure Messaging (SM) allow two parties to communicate with each other with the following security conditions being satisfied:

- Correctness
- Privacy: attacker obtains no information about the messages sent unless a party is compromised
- Authenticity: the attacker cannot change, duplicate or inject messages
- Immediate decryption
- Message-loss resilience: if a message is lost, communication continues
- Forward secrecy: all messages exchanged *before* a compromise remain hidden to an attacker
- Post-compromise security: the parties can recover *after* a compromise

The Signal Protocol, designed by Open Whisper Systems, is an example of Secure Messaging.

- deployed in many apps like WhatsApp, Facebook Messenger, Skype
- every message is encrypted and authenticated using a fresh symmetric key
- satisfies the above security conditions

Description of Signal: https://signal.org/docs/specifications/doubleratchet/doubleratchet.pdf lt's analysis: https://eprint.iacr.org/2018/1037.pdf

Primitives for SM Protocols

Correctness Privacy Authenticity Immediate decryption Message-loss resilience Forward security

AEAD (symmetric primitive)

AEAD – Authenticated Encryption with Associated Data

Post-compromise security } CKA (asymmetric primitive) CKA – Continuous Key Agreement

А		В
Sender	$\leftarrow k_{shared} \rightarrow$	Receiver
$s_{A,0} \leftarrow \texttt{InitSender}(k)$		$s_{B,0} \leftarrow \texttt{InitReceiver}(k)$
$s_{A,1}, c_1 \leftarrow \texttt{Send}(m_1)$ $s_{A,2}, c_2 \leftarrow \texttt{Send}(m_2)$	$\xrightarrow{c_1} \xrightarrow{c_2} $	
		$\begin{array}{l} s_{B,1}, m_1 \leftarrow \texttt{Receive}(c_1) \\ s_{B,2}, m_2 \leftarrow \texttt{Receive}(c_2) \end{array}$

- think about Send as of encryption, Receive as of decryption
- $s_{A,i} A$'s i th state
- $s_{\mathsf{B},i} \mathsf{B's} \ i \mathrm{th}$ state
- the states should remain secure
- ciphertexts c_i may not come to B in order!

Let Enc(), Dec() be encryption/decryption procedures of AEAD (see Lec. 7) $G: \{0,1\}^n \rightarrow \{0,1\}^{2n}$ – cryptographic pseudo-random generator (see Lec. 2)

В

Let Enc(), Dec() be encryption/decryption procedures of AEAD (see Lec. 7) G : $\{0,1\}^n \rightarrow \{0,1\}^{2n}$ – cryptographic pseudo-random generator (see Lec. 2)

Let Enc(), Dec() be encryption/decryption procedures of AEAD (see Lec. 7) G : $\{0,1\}^n \rightarrow \{0,1\}^{2n}$ – cryptographic pseudo-random generator (see Lec. 2)

В

Let Enc(), Dec() be encryption/decryption procedures of AEAD (see Lec. 7) G : $\{0,1\}^n \rightarrow \{0,1\}^{2n}$ – cryptographic pseudo-random generator (see Lec. 2)

All w_i are erased when no further needed.

How to get k_{shared} ?

How to get k_{shared} ? You know the answer: use Key Exchange! Signal is using Continuous Key Exchange based on Diffie-Hellman.

How to get k_{shared} ? You know the answer: use Key Exchange!

Signal is using Continuous Key Exchange based on Diffie-Hellman.

How to get k_{shared} ? You know the answer: use Key Exchange!

Signal is using Continuous Key Exchange based on Diffie-Hellman.

- At time i the shared key is $g^{x_i x_{i-1}}$
- A shared key is generated each time a party switches from **Receiver** to **Sender**
- If at some point $g^{x_i x_{i-1}}$ is compromised (attacker knows x_i), the parties recover privacy within two rounds.

This is the end of the lectures!

This is the end of the lectures!

Stay healthy and hope to see you soon!