
Block ciphers

Elena Kirshanova

Course “Information and Network Security”
Lecture 3

10 марта 2020 г.

Recap: PRG

• ‘Random’ in crypto may come from two sources:
� A ‘true’ random number generator (or entropy generator)
� An algorithmic ‘pseudorandom number generator’ (PRNG)

• Pseudorandom generator (PRG) – efficient algorithm
taking on input truly random bits (seem) and outputting
bits that are indistinguishable from random by ppt
adversaries

• Examples: in Linux: /dev/random, /dev/urandom (not
recommended for crypto applications); both use the
same PRG (SHA-1); on Windows: CryptoAPI’s
CryptGenRandom

• Better use established cryptographic PRGs, e.g.
ChaCha, Salsa, HMAC-SHA1 or CBC-AES

• Be aware of backdoored PRGs: Dual EC DRBG

Recap: PRG

• Statistical Tests: Diehard, NIST’s SP 800-22

• Known Answer Tests : BETTER NOT IN CODE
RELEASE

Recap: Stream ciphers

• Symmetric key is a seed to a PRG

• Encrypt: Enc(m, s) = PRG(s)⊕m = c
Decrypt: Dec(c, s) = PRG(s)⊕ c

• “Primitive”(=OTP) stream ciphers are typically very fast
and simple

• ... but inappropriate (=insecure) for many scenarios:
broken by key re-use, require integrity checking

• Examples of practical stream ciphers: RC4, Trivium,
A5/1 Generator

Block cipher

Formal definition

A Block cipher is a deterministic cipher with X :=M = C
and a function

f(k, ·) : X → X

• Correctness =⇒ f(k, ·) is one-to-one for all k.
• |X | <∞.

Thus, f(k, ·) is a permutation on X .

Security (informal) : f(k, ·) “looks like” a random
permutation

Block cipher in pictures

Plaintext

n bits

f, f−1

Key

k bits

Ciphertext

n bits

Examples:

• AES: n = 128, k = 128, 192, 256

• ГОСТ 34.12-2018: n = 128, k = 256 (Кузнечик)

A bit of history

• 70’s: IBM designs Lucifer. k = 128, n = 128

• ’76: DES is standardised k = 56, n = 64

• ’98: 3DES is standardised k = 168, n = 64

• ’00: AES winner Rejndael k = {128, 192, 256}, n = 128

Russian standards:

• ’89: ГОСТ 28147-89 k = 256, n = 64

• ’15 : ГОСТ Р 34.12-2015, RFC 7801 k = 256, n = 128

Block ciphers are iterative

x – plaintext, y – ciphertext

picture is taken from D.Boneh, V.Shoup A Graduate Course in Applied Cryptography

Two main paradigms in block cipher designs

• Feistel cipher
Сеть Фейстеля

Examples: DES, ГОСТ 28147-89

• Substitution-Permutation Network (SPN).
Подстановочно-перестановочная сеть

Examples: AES, ГОСТ 34.12-2018

Feistel Cipher

Provides a generic way to build invertible functions from arbitrary
functions.

Given f1, . . . , fr : {0, 1}n → {0, 1}n

construct an invertible F : {0, 1}2n → {0, 1}2n

Security (informal) : if f : K × {0, 1}n → {0, 1} “looks like” a
random function, then 3-Round Feistel
F : K3 × {0, 1}2n → {0, 1}2n is a pseudorandom permutation.

Feistel Cipher

Provides a generic way to build invertible functions from arbitrary
functions.

Given f1, . . . , fr : {0, 1}n → {0, 1}n

construct an invertible F : {0, 1}2n → {0, 1}2n

Security (informal) : if f : K × {0, 1}n → {0, 1} “looks like” a
random function, then 3-Round Feistel
F : K3 × {0, 1}2n → {0, 1}2n is a pseudorandom permutation.

Example: GOST’89 Round function

S0 S1 S2 S3 S4 S5 S6 S7

≪11

Ri

XOR to Li

ki

1

What’s S-box?

S := {0, 1}n → {0, 1}m

• Implemented as a look-up table
• There can be several S-boxes in one block-cipher
• Designed to be resistant to linear and differential
cryptanalysis

• Must not contain any fixed points:
S(x) 6= x, S(x) 6= x̄ ∀x

• an S-box is perfect if it’s a bent function (i.e., as “far
way” from linear of affine boolean function as possible)

Example: S-box in DES

S := {0, 1}6 → {0, 1}4

picture taken from Wikipedia

Example: S-box in AES

S := {0, 1}8 → {0, 1}8

picture taken from Wikipedia

Substitution-Permutation Network (SPN)

S S

S S

S S

S S

k
1

k
2

AES: an SPN cipher

ΠAES = {0, 1}128 → {0, 1}128 − invertible permutation

picture is taken from D.Boneh, V.Shoup A Graduate Course in Applied Cryptography

Attacks on block ciphers

Exhaustive search for block cipher key.

For DES/AES/GOST: two plaintext/ciphertext pairs
(m1, c1 = Enc(k,m1)), (m2, c2 = Enc(k,m2))
determine k with sufficiently high probability

Example : For DES find k ∈ {0, 1}56 s.t. ci = Enc(mi, k).

Cryptanalytic efforts:

• In ’99 22h on DeepCrack + distributed.net (a bit expensive
hardware)

• In ’07 13 days COPACOBANA (cheaper)

Advanced attacks on block ciphers

• Design attacks: linear & differential cryptnalalysis
Target: find a linear relation in bit positions

Pr [m[S0]⊕ Enc(k,m)[S1] = k[S2]] ≥ 1/2 + ε

Si ⊂ {0, . . . , n− 1} ∀k and random m

• Side-channel attacks: measure time or power needed for
Enc,Dec

• Fault-injection attacks: cause the hardware to introduce
errors at runtime (heat, EM interference)

Advanced attacks on block ciphers

• Design attacks: linear & differential cryptnalalysis
Target: find a linear relation in bit positions

Pr [m[S0]⊕ Enc(k,m)[S1] = k[S2]] ≥ 1/2 + ε

Si ⊂ {0, . . . , n− 1} ∀k and random m

• Side-channel attacks: measure time or power needed for
Enc,Dec

• Fault-injection attacks: cause the hardware to introduce
errors at runtime (heat, EM interference)

Advanced attacks on block ciphers

• Design attacks: linear & differential cryptnalalysis
Target: find a linear relation in bit positions

Pr [m[S0]⊕ Enc(k,m)[S1] = k[S2]] ≥ 1/2 + ε

Si ⊂ {0, . . . , n− 1} ∀k and random m

• Side-channel attacks: measure time or power needed for
Enc,Dec

• Fault-injection attacks: cause the hardware to introduce
errors at runtime (heat, EM interference)

Take-home message

• DON’T design YOUR OWN
block-cipher

• TRY NOT TO implement
cryptoprimitives yourself if good
implementations exist

• Choose key-sizes wisely

Further reading

