
Cryptographic Hash Function

Elena Kirshanova

Course “Information and Network Security”
Lecture 6

12 апреля 2020 г.

Agenda

Last time:
• Achieve message integrity using MACs
• Construction of MACs from block ciphers. Example:
CBC-MAC

Today:
Construct a more efficient MAC using hash functions (HMAC)

Cryptographic Hash Function: definition

A Hash function is a pair of polynomial time algorithms (Gen,H):
1. Probabilistic Gen : s← Gen(1λ)

2. Deterministic Hs : {0, 1}? → {0, 1}`.

Most important property of Hs is collision resistant:
Given s, there is no efficient adversary who can find two inputs
x, x′(x! = x′) to Hs s.t.

Hs(x) = H(x′)

! A “hash” function in general sense does not necessarily has this
property. A cryptographic hash function must be collision
resistant.

There are many collisions for Hs, but it must be hard to find any.

Cryptographic Hash Function: definition

A Hash function is a pair of polynomial time algorithms (Gen,H):
1. Probabilistic Gen : s← Gen(1λ)

2. Deterministic Hs : {0, 1}? → {0, 1}`.

Most important property of Hs is collision resistant:
Given s, there is no efficient adversary who can find two inputs
x, x′(x! = x′) to Hs s.t.

Hs(x) = H(x′)

! A “hash” function in general sense does not necessarily has this
property. A cryptographic hash function must be collision
resistant.

There are many collisions for Hs, but it must be hard to find any.

Properties of cryptographic hash function

I Pre-image resistance (or one-wayness)

Given (s, y)
Find x s.t. Hs(x) = y

A collision resistant hash function is also pre-image resistant

II 2nd Pre-image resistance

Given (s, x)
Find x′! = x s.t. Hs(x) = Hs(x′)
A collision resistant hash function is also 2nd pre-image resistant

Conclusion: Collision resistance is the strongest requirement

Properties of cryptographic hash function

I Pre-image resistance (or one-wayness)

Given (s, y)
Find x s.t. Hs(x) = y

A collision resistant hash function is also pre-image resistant

II 2nd Pre-image resistance

Given (s, x)
Find x′! = x s.t. Hs(x) = Hs(x′)
A collision resistant hash function is also 2nd pre-image resistant

Conclusion: Collision resistance is the strongest requirement

A word of caution: Exotic property of hash functions

In BitCoind world the above three properties: pre-image
resistance, 2nd pre-image resistance, collision resistance may
have other names: “hiding”, “puzzle friendliness” , collision
resistance.

These are not special properties! BitCoin uses standardized
cryptographic hash function (wait until the end of the
lecture).

See e.g. Section 1.1. in https:
//d28rh4a8wq0iu5.cloudfront.net/bitcointech/
readings/princeton_bitcoin_book.pdf?a=1

https://d28rh4a8wq0iu5.cloudfront.net/bitcointech/readings/princeton_bitcoin_book.pdf?a=1
https://d28rh4a8wq0iu5.cloudfront.net/bitcointech/readings/princeton_bitcoin_book.pdf?a=1
https://d28rh4a8wq0iu5.cloudfront.net/bitcointech/readings/princeton_bitcoin_book.pdf?a=1

Generic attack on any hash function: birthday paradox

Remainder: Let h1, h2, . . . , hn ∈ {0, 1}` be independent identically
distributed bit strings. Then Birthday paradox says that

For n = O
(√
|{0, 1}`|

)
= O

(
2`/2

)
Pr[∃(i! = j) : hi = hj] > 1/2.

Generic algorithm finds a collision in O(2`/2) hash evaluations:

1. Choose 2`/2 random bit strings (messages) m1, . . . ,m2`/2

2. For each mi compute hi = Hs(mi), sort pairs to (hi,mi) w.r.t. hi

3. Find in the sorted list hi = hj . A collision (mi,mj).

Birthday paradox ensures that the above algorithm succeeds with
constant success probability.

Conclusion: Require ` ≥ 160.

Generic attack on any hash function: birthday paradox

Remainder: Let h1, h2, . . . , hn ∈ {0, 1}` be independent identically
distributed bit strings. Then Birthday paradox says that

For n = O
(√
|{0, 1}`|

)
= O

(
2`/2

)
Pr[∃(i! = j) : hi = hj] > 1/2.

Generic algorithm finds a collision in O(2`/2) hash evaluations:

1. Choose 2`/2 random bit strings (messages) m1, . . . ,m2`/2

2. For each mi compute hi = Hs(mi), sort pairs to (hi,mi) w.r.t. hi

3. Find in the sorted list hi = hj . A collision (mi,mj).

Birthday paradox ensures that the above algorithm succeeds with
constant success probability.

Conclusion: Require ` ≥ 160.

Real world hash functions: historical overview

1. 1980s: MD4 (Message Digest) by R. Rivest. ` = 128
Status: Broken. A collision can be found within seconds

2. 1990: MD5. ` = 128
Status: Broken. A collision can be found within seconds

3. 1995: SHA-1 (Secure Hash Algorithm 1) ` = 160
Status: Broken. See https://shattered.io/ for two PDFs with
the same SHA-1 values.
Caution: may still be used by some systems (i.e., GIT).

4. 2001: SHA-2 (SHA-256, SHA-384, SHA-512). ` = 256, 348, 512
Status: Considered secure

5. 2012: SHA-3 (Keccak). SHA-3− 224/256/348/512.
Status: Considered secure

In Russia

1. GOST R 34.11-94 and GOST 34.311-95. ` = 256
Status: Depricated Collision in 2105 time

2. GOST R 34.11-2012. Streebog ` = 256, 512
Status: Should be used in certified products

https://shattered.io/

Real world hash functions: historical overview

1. 1980s: MD4 (Message Digest) by R. Rivest. ` = 128
Status: Broken. A collision can be found within seconds

2. 1990: MD5. ` = 128
Status: Broken. A collision can be found within seconds

3. 1995: SHA-1 (Secure Hash Algorithm 1) ` = 160
Status: Broken. See https://shattered.io/ for two PDFs with
the same SHA-1 values.
Caution: may still be used by some systems (i.e., GIT).

4. 2001: SHA-2 (SHA-256, SHA-384, SHA-512). ` = 256, 348, 512
Status: Considered secure

5. 2012: SHA-3 (Keccak). SHA-3− 224/256/348/512.
Status: Considered secure

In Russia

1. GOST R 34.11-94 and GOST 34.311-95. ` = 256
Status: Depricated Collision in 2105 time

2. GOST R 34.11-2012. Streebog ` = 256, 512
Status: Should be used in certified products

https://shattered.io/

Real world hash functions: historical overview

1. 1980s: MD4 (Message Digest) by R. Rivest. ` = 128
Status: Broken. A collision can be found within seconds

2. 1990: MD5. ` = 128
Status: Broken. A collision can be found within seconds

3. 1995: SHA-1 (Secure Hash Algorithm 1) ` = 160
Status: Broken. See https://shattered.io/ for two PDFs with
the same SHA-1 values.
Caution: may still be used by some systems (i.e., GIT).

4. 2001: SHA-2 (SHA-256, SHA-384, SHA-512). ` = 256, 348, 512
Status: Considered secure

5. 2012: SHA-3 (Keccak). SHA-3− 224/256/348/512.
Status: Considered secure

In Russia

1. GOST R 34.11-94 and GOST 34.311-95. ` = 256
Status: Depricated Collision in 2105 time

2. GOST R 34.11-2012. Streebog ` = 256, 512
Status: Should be used in certified products

https://shattered.io/

Real world hash functions: historical overview

1. 1980s: MD4 (Message Digest) by R. Rivest. ` = 128
Status: Broken. A collision can be found within seconds

2. 1990: MD5. ` = 128
Status: Broken. A collision can be found within seconds

3. 1995: SHA-1 (Secure Hash Algorithm 1) ` = 160
Status: Broken. See https://shattered.io/ for two PDFs with
the same SHA-1 values.
Caution: may still be used by some systems (i.e., GIT).

4. 2001: SHA-2 (SHA-256, SHA-384, SHA-512). ` = 256, 348, 512
Status: Considered secure

5. 2012: SHA-3 (Keccak). SHA-3− 224/256/348/512.
Status: Considered secure

In Russia

1. GOST R 34.11-94 and GOST 34.311-95. ` = 256
Status: Depricated Collision in 2105 time

2. GOST R 34.11-2012. Streebog ` = 256, 512
Status: Should be used in certified products

https://shattered.io/

Real world hash functions: historical overview

1. 1980s: MD4 (Message Digest) by R. Rivest. ` = 128
Status: Broken. A collision can be found within seconds

2. 1990: MD5. ` = 128
Status: Broken. A collision can be found within seconds

3. 1995: SHA-1 (Secure Hash Algorithm 1) ` = 160
Status: Broken. See https://shattered.io/ for two PDFs with
the same SHA-1 values.
Caution: may still be used by some systems (i.e., GIT).

4. 2001: SHA-2 (SHA-256, SHA-384, SHA-512). ` = 256, 348, 512
Status: Considered secure

5. 2012: SHA-3 (Keccak). SHA-3− 224/256/348/512.
Status: Considered secure

In Russia

1. GOST R 34.11-94 and GOST 34.311-95. ` = 256
Status: Depricated Collision in 2105 time

2. GOST R 34.11-2012. Streebog ` = 256, 512
Status: Should be used in certified products

https://shattered.io/

Real world hash functions: historical overview

1. 1980s: MD4 (Message Digest) by R. Rivest. ` = 128
Status: Broken. A collision can be found within seconds

2. 1990: MD5. ` = 128
Status: Broken. A collision can be found within seconds

3. 1995: SHA-1 (Secure Hash Algorithm 1) ` = 160
Status: Broken. See https://shattered.io/ for two PDFs with
the same SHA-1 values.
Caution: may still be used by some systems (i.e., GIT).

4. 2001: SHA-2 (SHA-256, SHA-384, SHA-512). ` = 256, 348, 512
Status: Considered secure

5. 2012: SHA-3 (Keccak). SHA-3− 224/256/348/512.
Status: Considered secure

In Russia

1. GOST R 34.11-94 and GOST 34.311-95. ` = 256
Status: Depricated Collision in 2105 time

2. GOST R 34.11-2012. Streebog ` = 256, 512
Status: Should be used in certified products

https://shattered.io/

Construction of a hash function: Merkle-Damg̊ard paradigm

Given a compression function (will be defined later)

h : K ×M→ K

Construct H :M? → K
Let m = (m1,m2,m3) of arbitrary length.

IV - Initial Value (fixed for given hash function)
PB - Padding Block [100 . . . 0||mes. length]. If PB does not fit
add another block

Security of Merkle-Damg̊ard construction

Theorem: If h is collision resistant so is H.

Construction of compressing function h

Enc : K × {0, 1}n → {0, 1}n – a block-cipher.
Davies-Meyer construction:

h(Hi,m) = Enc(Hi,m)⊕Hi

Theorem (Informal): If Enc is a “good” cipher (i.e., Enc is a
random permutation for fixed k ∈ K), then finding a collision
h(H,m) = h(H ′,m′) takes 2n/2 evaluations of (Enc,Dec).

Example: SHA-256

In SHA-256 the compression function is:

Merkle-Damg̊ard construction is used to allow for arbitrary
message length.

Alternative construction of h

Davies-Meyer construction:

h(H,m) = Enc(H,m)⊕H

Miyaguchi–Preneel constriction:

h(H,m) = Enc(H,m)⊕H ⊕m

Other variants of combinations of Enc, H,m exist. Not all
combination are secure!
GOST Р 34.11-2012 (Streebog) uses Miyaguchi–Preneel.

Sponge construction: SHA-3

SHA-3 (Keccak) is not based on compression function. It is a Sponge
(рус. Губка) construction.
P0, . . . Pn−1 are derived from the input message. Z0, Z1, . . . is the
output

The block transformation f is a permutation consisting of 5 primitive
function (small permutations, bitwise operations).

CC Wikipedia

Hash functions in BitCoin

Basic concept in BitCoint: Proof of Work (PoW)
Intuition: if a user has computing power =⇒ he should be able
to prove it via doing some work

• PoW introduced to crypto by Dwork & Naor (1992) as a
countermeasure against spam

• Idea: force users to solve some “moderately hard” puzzle (a
solution should be fast to verify)

Hash functions in BitCoin: constructing PoW

Main primitive: cryptographic hash function H : {0, 1}? → {0, 1}`
that takes T (H) time to evaluate

Alice Bob
Prover Verifier

x ∈ {0, 1}?
x←−−−−

Finds s ∈ {0, 1}?

s.t. H(s||x)
s−−−−→

starts with n 0’s Checks if
H(s||x) has n 0’s

Time: 2nT (H) Time: T (H)

For a cryptographic hash function H Alice cannot do better than
brute-force over s. This is a pre-image search.

