Cryptographic Hash Function

Elena Kirshanova

Course "Information and Network Security" Lecture 6 12 апреля 2020 г. Agenda

Last time:

- Achieve message integrity using MACs
- Construction of MACs from block ciphers. Example: CBC-MAC

Today:

Construct a more efficient MAC using hash functions (HMAC)

Cryptographic Hash Function: definition

A Hash function is a pair of polynomial time algorithms (Gen, \mathcal{H}):

- 1. Probabilistic Gen: $s \leftarrow \text{Gen}(1^{\lambda})$
- 2. Deterministic $\mathcal{H}_s: \{0,1\}^* \to \{0,1\}^{\ell}$.

Cryptographic Hash Function: definition

A Hash function is a pair of polynomial time algorithms (Gen, \mathcal{H}):

- 1. Probabilistic Gen: $s \leftarrow \text{Gen}(1^{\lambda})$
- 2. Deterministic $\mathcal{H}_s: \{0,1\}^* \to \{0,1\}^{\ell}$.

Most important property of \mathcal{H}_s is collision resistant: Given s, there is no efficient adversary who can find two inputs x, x'(x! = x') to \mathcal{H}_s s.t.

$$\mathcal{H}_s(x) = \mathcal{H}(x')$$

! A "hash" function in general sense does not necessarily has this property. A cryptographic hash function <u>must</u> be collision resistant.

There are many collisions for \mathcal{H}_s , but it must be hard to find any.

Properties of cryptographic hash function

I Pre-image resistance (or one-wayness)

Given (s, y)

Find x s.t. $\mathcal{H}_s(x) = y$

A collision resistant hash function is also pre-image resistant

Properties of cryptographic hash function

I Pre-image resistance (or one-wayness)

Given (s, y)

Find x s.t. $\mathcal{H}_s(x) = y$

A collision resistant hash function is also pre-image resistant

II 2nd Pre-image resistance

Given (s, x)

Find x'! = x s.t. $\mathcal{H}_s(x) = \mathcal{H}_s(x')$

A collision resistant hash function is also 2^{nd} pre-image resistant

Conclusion: Collision resistance is the strongest requirement

A word of caution: Exotic property of hash functions

In BitCoind world the above three properties: pre-image resistance, $2^{\rm nd}$ pre-image resistance, collision resistance may have other names: "hiding", "puzzle friendliness", collision resistance.

These are not special properties! BitCoin uses standardized cryptographic hash function (wait until the end of the lecture).

See e.g. Section 1.1. in https: //d28rh4a8wq0iu5.cloudfront.net/bitcointech/ readings/princeton_bitcoin_book.pdf?a=1

Generic attack on any hash function: birthday paradox

Remainder: Let $h_1, h_2, \dots, h_n \in \{0, 1\}^{\ell}$ be independent identically distributed bit strings. Then Birthday paradox says that

For
$$n = \mathcal{O}\left(\sqrt{|\{0,1\}^{\ell}|}\right) = \mathcal{O}\left(2^{\ell/2}\right)$$
 $\Pr[\exists (i!=j): h_i = h_j] > 1/2.$

Generic attack on any hash function: birthday paradox

Remainder: Let $h_1, h_2, \ldots, h_n \in \{0,1\}^{\ell}$ be independent identically distributed bit strings. Then Birthday paradox says that

For
$$n = \mathcal{O}\left(\sqrt{|\{0,1\}^{\ell}|}\right) = \mathcal{O}\left(2^{\ell/2}\right)$$
 $\Pr[\exists (i!=j) : h_i = h_j] > 1/2.$

Generic algorithm finds a collision in $\mathcal{O}(2^{\ell/2})$ hash evaluations:

- 1. Choose $2^{\ell/2}$ random bit strings (messages) $m_1, \ldots, m_{2^{\ell/2}}$
- 2. For each m_i compute $h_i=\mathcal{H}_s(m_i)$, sort pairs to (h_i,m_i) w.r.t. h_i
- 3. Find in the sorted list $h_i = h_j$. A collision (m_i, m_j) .

Birthday paradox ensures that the above algorithm succeeds with constant success probability.

Conclusion: Require $\ell > 160$.

1. 1980s: MD4 (Message Digest) by R. Rivest. $\ell=128$ Status: Broken. A collision can be found within seconds

- 1. 1980s: MD4 (Message Digest) by R. Rivest. $\ell=128$ Status: Broken. A collision can be found within seconds
- 2. 1990: MD5. $\ell=128$ Status: Broken. A collision can be found within seconds

- 1. 1980s: MD4 (Message Digest) by R. Rivest. $\ell=128$ Status: Broken. A collision can be found within seconds
- 2. 1990: MD5. $\ell=128$ Status: Broken. A collision can be found within seconds
- 3. 1995: SHA-1 (Secure Hash Algorithm 1) ℓ = 160 Status: Broken. See https://shattered.io/ for two PDFs with the same SHA-1 values. Caution: may still be used by some systems (i.e., GIT).

- 1. 1980s: MD4 (Message Digest) by R. Rivest. $\ell=128$ Status: Broken. A collision can be found within seconds
- 2. 1990: MD5. $\ell=128$ Status: Broken. A collision can be found within seconds
- 3. 1995: SHA-1 (Secure Hash Algorithm 1) ℓ = 160 Status: Broken. See https://shattered.io/ for two PDFs with the same SHA-1 values. Caution: may still be used by some systems (i.e., GIT).
- 4. 2001: SHA-2 (SHA-256, SHA-384, SHA-512). $\ell = 256, 348, 512$ Status: Considered secure

- 1. 1980s: MD4 (Message Digest) by R. Rivest. $\ell=128$ Status: Broken. A collision can be found within seconds
- 2. 1990: MD5. $\ell=128$ Status: Broken. A collision can be found within seconds
- 3. 1995: SHA-1 (Secure Hash Algorithm 1) ℓ = 160 Status: Broken. See https://shattered.io/ for two PDFs with the same SHA-1 values. Caution: may still be used by some systems (i.e., GIT).
- 4. 2001: SHA-2 (SHA-256, SHA-384, SHA-512). $\ell = 256, 348, 512$ Status: Considered secure
- 5. 2012: SHA-3 (Keccak). SHA-3 -224/256/348/512. Status: Considered secure

- 1. 1980s: MD4 (Message Digest) by R. Rivest. $\ell=128$ Status: Broken. A collision can be found within seconds
- 2. 1990: MD5. $\ell = 128$ Status: Broken. A collision can be found within seconds
- 1995: SHA-1 (Secure Hash Algorithm 1) ℓ = 160
 Status: Broken. See https://shattered.io/ for two PDFs with the same SHA-1 values.
 Caution: may still be used by some systems (i.e., GIT).
- 4. 2001: SHA-2 (SHA-256, SHA-384, SHA-512). $\ell = 256, 348, 512$ Status: Considered secure
- 5. 2012: SHA-3 (Keccak). SHA-3 224/256/348/512. Status: Considered secure

In Russia

- 1. GOST R 34.11-94 and GOST 34.311-95. $\ell=256$ Status: Depricated Collision in 2^{105} time
- 2. GOST R 34.11-2012. Streebog $\ell=256,512$ Status: Should be used in certified products

Construction of a hash function: Merkle-Damgård paradigm

Given a compression function (will be defined later)

$$h: \mathcal{K} \times \mathcal{M} \to \mathcal{K}$$

Construct $\mathcal{H}: \mathcal{M}^{\star} \to \mathcal{K}$

Let $m = (m_1, m_2, m_3)$ of arbitrary length.

IV - Initial Value (fixed for given hash function)

 ${\sf PB}$ - Padding Block $[100\dots0||{\sf mes.~length}].$ If ${\sf PB}$ does not fit add another block

Security of Merkle-Damgård construction

Theorem: If h is collision resistant so is H.

Construction of compressing function h

Enc: $\mathcal{K} \times \{0,1\}^n \to \{0,1\}^n$ – a block-cipher.

Davies-Meyer construction:

$$h(H_i, m) = \mathsf{Enc}(H_i, m) \oplus H_i$$

Theorem (Informal): If Enc is a "good" cipher (i.e., Enc is a random permutation for fixed $k \in \mathcal{K}$), then finding a collision h(H,m) = h(H',m') takes $2^{n/2}$ evaluations of (Enc, Dec).

Example: SHA-256

In SHA-256 the compression function is:

Merkle-Damgård construction is used to allow for arbitrary message length.

Alternative construction of h

Davies-Meyer construction:

$$h(H,m) = \operatorname{Enc}(H,m) \oplus H$$

Miyaguchi-Preneel constriction:

$$h(H,m) = \operatorname{Enc}(H,m) \oplus H \oplus m$$

Other variants of combinations of Enc, H, m exist. Not all combination are secure!

GOST P 34.11-2012 (Streebog) uses Miyaguchi-Preneel.

Sponge construction: SHA-3

SHA-3 (Keccak) is <u>not</u> based on compression function. It is a Sponge (pyc. Γ y δ Ka) construction.

 $P_0, \dots P_{n-1}$ are derived from the input message. Z_0, Z_1, \dots is the output

The block transformation f is a permutation consisting of 5 primitive function (small permutations, bitwise operations).

CC Wikipedia

Hash functions in BitCoin

Basic concept in BitCoint: Proof of Work (PoW) Intuition: if a user has computing power \implies he should be able to prove it via doing some work

- PoW introduced to crypto by Dwork & Naor (1992) as a countermeasure against spam
- Idea: force users to solve some "moderately hard" puzzle (a solution should be fast to verify)

Hash functions in BitCoin: constructing PoW

Main primitive: cryptographic hash function $\mathcal{H}: \{0,1\}^* \to \{0,1\}^\ell$ that takes $T(\mathcal{H})$ time to evaluate

Checks if $\mathcal{H}(s||x)$ has n 0's

 $x \in \{0, 1\}^*$

Time: $T(\mathcal{H})$

For a cryptographic hash function \mathcal{H} Alice cannot do better than brute-force over s. This is a pre-image search.