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Agenda

Up until now:
• Confidentiality (using Symmetric Encryption)
• Integrity (MAC, HMAC)

These were protections against eavesdropping (passive adversary)

Today:
Protect data against (tampering) (active adversary):
Authenticated Encryption
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Authenticated Encryption: definition

An Authenticated Encryption (AE) system consists of three ppt
algorithms
• Key generation: KeyGen(1λ) : k ← K

• Encryption: Enc : K ×M×N → C

• Decryption: Dec : K × C ×N →M∪ {⊥}

K - key space,M - message space, C - ciphertext space, N -
nonce space.

NEW: {⊥} - ciphertext is rejected
Nonce = “number that can only be used once”
It can be predictable, but should never be used twice for the same
key.
Example: values derived from IV in various modes of encryption.
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Security of AE

An Authenticated Encryption (AE) system consists of three ppt
algorithms
• Key generation: KeyGen(1λ) : k ← K

• Encryption: Enc : K ×M×N → C

• Decryption: Dec : K × C ×M×N →M∪ {⊥}

Correctness: ∀m,∀k, ∀n : Dec(k,Enc(k,m, n), n) = m

Security:

• Enc(k,m0, n) is indistinguishable from Enc(k,m1, n)
∀m0! = m1 (without knowledge of k)

• No ppt adversary can create a new ciphertext that does not
decrypt to {⊥}.
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Security of AE

Authenticated Encryption provides
• Authenticity: If Dec(k, c, n)! = {⊥}, then the receiver is
ensured that the message comes from someone who knows k

• AE =⇒ Chosen Ciphertext Security

In Chosen Ciphertext Attack (CCA) an adversary can
• obtain encryptions of messages of his choice
• ask for decryption of any ciphertext of his choice except one
specific “challenge” c

A CCA adversary is a very powerful adversary.
Why does it capture real life attacks?
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Example of CCA attack (IPSec, simplified)

Let Enc be a block cipher in CTR mode
The message m consists of a header “to Bob”+the rest

Alice Mail server Bob

k
c =Enc(k,m=To Bob||...)−−−−−−−−−−−−−−→ k

m−−−−→

c−−−−−−→ Eve ĉ−−−−→

Assume len(“to Bob”) == len(“to Eve”) == block-size.

ĉ1 = c1⊕[“to Bob”] ⊕ [“to Eve”]

The rest blocks of ĉ are equal to c.

Eve knows m by querying Dec(ĉ).
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Construction of AE

AE = Secure Encryption + Secure Mac

Two keys: Encryption key kE, MAC key KM

Two main paradigms:

I. Encrypt-then-MAC
1. c = Enc(kE ,m)

2. t = MAC(kM , c)

3. return (c, t)

Example: IPSec

II. MAC-then-Encrypt
1. t = MAC(kM , n)

2. c = Enc(kE ,m||t)
3. return c

Example: SSL

• Encrypt-then-MAC always provides AE
• MAC-then-Encrypt provides AE when Enc is randomized
CTR/CBC mode encryption

• Other combinations of Mac and Encryption usually do not
provide secure AE
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AE standards

1. GCM (Galois Counter Mode). Encrypt-then-MAC
Encryption: CTR mode + fast Mac (Carter-Wegman Mac).
Application: TLS
Advantages: somewhat fast (on Intel)

2. CCM. MAC-then-Encrypt
Encryption: CBC MAC (AES)+ CTR mode (AES)
Application: 802.11i
Advantages: less code

3. ChaCha20-Poly1305. Encrypt-then-MAC
Encryption: ChaCha20 Encryption + Poly1305 MAC
Application: TLS
Advantages: fast

These three are implemented in OpenSSL.
I do not know of Russian AE standards (although one can
replace Enc and MAC by Russian GOSTs).
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AEAD: Authenticated Encryption with Associated Data

Often not all data needs to be encrypted.

[Associated data||Encrypted data]︸ ︷︷ ︸
Authenticated

Example: [header||payload] in internet protocols

Most used AEAD: AES-GCM AEAD



AES-GCM AEAD

Message m = (m1, . . . ,ms)
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AES-GCM AEAD

Message m = (m1, . . . ,ms)

Output (c1, . . . , cs, cs+1)



AES-GCM AEAD

• Uses just one key

• MAC: GHASH (Galois Hash) - uses finite field arithmetic (fast)

• Decryption:
1. Verifies MAC
2. Dec(c1, . . . , cs)



AEAD in TLS 1.3

Browser Phase 1 Handshake Web server
Asymmetric Encryption
Common keys are derived

kb→s kb→s

ks→b ks→b

Phase 2 TLS record protocol
AEAD
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TLS record protocol

Data = [m1, . . . ,ms]

Browser Web server
kb→s kb→s

ks→b ks→b

ctrb→s ctrb→s

ctrs→b [Meta data|| mi || Nonce]︸ ︷︷ ︸ ctrs→b

AES-GCM-AEAD(kb→s)−−−−−−−−−−−−−−−−−−−−−−−−→

ctrb→s ++ ctrb→s ++

Meta data includes: record on the phase (1 or 2), TLS
Version, len(c)
Counters ctr are used to prevent replay attacks
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Programming Assignment # 5

OpenSSL provides interfaces to GCM, CCM AEs via EVP

This PA: to implement Encryption and Decryption Interfaces for
any two Authenticated Encryption
• GCM
• CCM
• ChaCha20-Poly1305

See https://wiki.openssl.org/index.php/EVP_
Authenticated_Encryption_and_Decryption for code

https://wiki.openssl.org/index.php/EVP_Authenticated_Encryption_and_Decryption
https://wiki.openssl.org/index.php/EVP_Authenticated_Encryption_and_Decryption

