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under the mistaken impression that rational and not necessarily integral
values were allowed, had no difficulty in supplying an answer; he simply
divided the relation
(r2 +dy? —d(2r) =(r — d)?
by the quantity (2 —d)? to arrive at the solution
r24-d 2r

X=E_a J=r"4

where r#d is an arbitrary rational number. This, needless to say, was
rejected by Fermat, who wrote that “solutions in fractions, which can be
given at once from the merest elements of arithmetic, do not satisfy me.”
Now informed of all the conditions of the challenge, Brouncker and
Wallis jointly devised a tentative method for solving x2—dy?=1 in
integers, without being able to give a proof that it will always work.
Appatently the honots rested with Brouncker, for Wallis congratulated
Brouncker with some pride that he had ““preserved untarnished the fame
that Englishmen have won in former times with Frenchmen.”

After having said all this, we should record that Fermat’s well-
directed effort to institute a new tradition in arithmetic through a mathe-
matical joust was largely a failure. Save for Frénicle, who acked the
talent to vie in intellectual combat with Fermat, number theory had no
special appeal to any of his contemporaries. The subject was permitted
to fall into disuse, until Euler, after the lapse of nearly a century, picked
up where Fermat had left off. Both Euler and Lagrange contributed to

the resolution of the celebrated problem of 1657. By converting Vdinto
an infinite continued fraction, Euler (1759) invented a procedure for
obtaining the smallest integral solution of x2 —dy?>=1, but he failed to
show that the process leads to a solution other than x =1, y=0. It was
left to Lagrange to clear up this matter. Completing the theory left
unfinished by Euler, Lagrange in 1768 published the first rigorous
proof that all solutions arise through the continued fraction expansion
of Vd.

As a result of a mistaken reference, the central point of conten-
tion, the equation x2 —dy? =1, has gone into the literature with the title
“Pell’s equation.” The erroneous attribution of its solution to the
English mathematician John Pell (1611-1685), who had little to do with
the problem, was an oversight on Euler’s part. On a cursory reading
of Wallis’ Opera Mathematica (1693), in which Brouncker’s method of
solving the equation is set forth as well as information as to Pell’s work
on diophantine analysis, Euler must have confused their contributions.
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By all rights we should call x2 —4y2 =1 “Fermat’s equation,” for he was
the first to deal with it systematically. While the historical error has
long been recognized, Pell’s name is the one that is indelibly attached to
the equation.

Whatever the integral value of 4, the equation x%—dy2=1 is
satisfied trivially by x =41, y=0. If d<—1, then x® —4y2>1 (except
when x =y =0) so that these exhaust the solutions; when d=—1, two
more solutions occut, namely x =0, y=-41. The case in which 4 is
a perfect square is easily dismissed. For if d=#2 for some #, then
x2 —dy? =1 can be written in the form

(x+my)(x —my) =1
which is possible if and only if x + 7y =x —ny =4-1; it follows that
NCE L RECEL ) I

and the equation has no solutions apart from the trivial ones x =-4-1, y =0.

From now on, we shall restrict our investigation of the Pell
equation x? —4y2=1 to the only interesting situation, that where 4 is a
positive integer which is not a square. Let us say that a solution x, y of
this equation is a positive solution provided both x and y are positive.
Since solutions beyond those with y =0 can be arranged in sets of four
by combinations of signs -+x, 4y, it is clear that all solut1on$ will be
known once all positive solutions have been found. For thlS reason,
we seek only positive solutions of x2 —dy2=1.

‘The result which provides us with a starting point asScrts that
any pair of positive integers satisfying Pell’s equation can be obtained

from the continued fraction representing the irrational number /7.

TrEOREM 13-14.  If p, q is a positive solution of x® —dy2 =1, then p|q is
a convergent of the continued fraction expansion of V4.

Proof: In light of the hypothesis that p2 —dg? =1, we have
(b —aVaXp+4vVd) =1
implying that p > gVv/d as well as that
2_yi—__1

q g(p+qVa)’
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As a result,
Vi vd_ _ 1
0<L va< = =5—.
g gqVd+qVd) 2¢°Vd 24°
A direct appeal to Theorem 13-13 indicates the p/g must be a con-
vergent of V4.

In general, the converse of the preceding theorem is false: not
all of the convergents p,/g, of Vd supply solutions to x? —dy?=1.
Nonetheless, we can say something about the size of the values taken on
by the sequence p,? —dg,?.

THEOREM 13-15.  If p|q is a comvergent of the continued fraction expansion
of Vd, then x=p, y=q is a solution of one of the equations

x2 —dy:=#,
where |k <142V,

Proof: If pjqis a convergent of v/d, then the corollary to Theorem
13-11 guarantees that

‘vz_ﬁy <
9 49
and therefore
1
|2 —qVdl <.
This being so, we have
-1 -
|p+4Vd| =[(p— V) +24Vd| < +20Va<(1+2V g
These two inequalities combine to yield
1 -
|9*—da*| =p—qVd| |p+4Vi| < (1 +2Vd)g=1+2V4,
which is precisely what was to be proved.

In illustration let us take the case of d==7. Using the continued
fraction expansion V71=[2;1,1,1, 4], the first few convergents of V7
are determined to be

2/1, 3/1,5/2, 8/3, ....

Running through the calculations of p,? —7¢,?, we find that
22_.7.12=-3, 32-7.12=2, 52-7.22=-3, &-7.3*=],
whence x =8, y=3 provides a positive solution of the equation .x% —

Ty2=1.
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While a rather elaborate study can be made of periodic continued
fractions, it is not our intention to explore this area at any length. The
reader may have noticed already that in the examples considered so far,

the continued fraction expansions of V4 all took the form

Vid=l[ay; ay, ag, ..., a,];

that s, the periodic part starts after one term, this initial term being [V/d].
It is also true that the last term 4, of the period is always equal to 24, and
that the period, with the last term excluded, is symmetrical (the symmetri-
cal part may or may not have a middle term). This is typical of the general
situation. Without entering into the details of proof, let us simply
record the fact: if 4 is a positive integer which is not a perfect square,
then the continued fraction expansion of V/4 necessatily has the form

Vd=ay; 8y, 3, a3, .-+, a3, a3, 41, 245)-
In the case in which =19, for instance, the expansion is

V19=[4;2,1,3,1, 2, 8]
while d =73 gives

V73=[8;1,1,5,5,1, 1, 16).

Among all /<100, the longest period is that of V94 which has sixteen
terms:

V9% =[9;1,2,3,1,1,5,1,81, 5,1, 1, 3, 2, 1, 18].

The accompanying table lists the continued fraction expansions
of Vd, where 4 is a nonsquare integer between 2 and 40.

V2=[1;2] V1T=[4;3] V29=[5;2,1,1,2,10]
V3=[1;1,2] V18=[4;4,8] V30=[5;2,10]

V5 =[2;4] V19=[4;2,1,3,1,2,8] V31=][5;1,1,3,5,3,1,1, 10]
V6=[2;2,4] V20=[4;2,8] V32=[5;1,1,1,10]

V7=[2;1,1,1,4) v21=[4;1,3,1, 8] V33=[5;1, 2,1, 10]
V8=1[2;1,4] V22=[4;1,2,4,2,1,8] V34=[5;1,4,1,10]

V10=[3;6] V23=[4;1,3,1, 8] \/—=[5,1, 10]
VI1=[3;3,] V24=[4;1,8] V37 =[6;12]

V12=[3;2,6] V26 =1[5;10] V38 =16; 6, 12]
V13=[3;1,1,1,6] V27=I[5;5,10] V39 =[6; 4, 12]

ﬂ_[3,1,2,1,6] V28=15;3, 2, 3, 10] V40 =[6;3,12)
V15=[3;1,6]



