Quantum Computers & Implications for IT-Security

Alexander May Ruhr-University Bochum Horst-Görtz Institut for IT Security

Summer School Kaliningrad – July 2019

Agenda

- Basics of quantum computation
- e How quantum computers influence asym/sym crypto
- Grover's search algorithm
- Oevelopment of quantum computer

A

A B F A B F

Spiegel on 18.05.2019

SPIEGEL ONLINE

Quantencomputer Diese Maschine wird unser Leben ändern

SPIEGEL Exklusiv für Abonnenten

Die Welt steht vor einer technischen Revolution: Quantencomputer -Millionen Mal schneller als moderne Superrechner. Sie könnten die großen Probleme der Menschheit lösen. Von Thomas Schulz

・ロト ・ 四ト ・ ヨト ・ ヨト

D-Wave Systems Quantenprozessor mit Kühlaggregat: "Die Fortschritte zuletzt waren geradezu fantastisch"

Picture from: https://www.spiegel.de/plus

Quantum Key Distribution (QKD)

Pictures: https://phys.org/news/2018-01-real-world-intercontinental-guantum-enabled-micius.html

Alexander May	Quantum & IT Secu
---------------	-------------------

1-qubit system and superposition

1-qubit

$$\begin{aligned} |z\rangle &= \alpha_0 |0\rangle + \alpha_1 |1\rangle \in \mathbb{C}^2 \end{aligned}$$

with $|0\rangle &= (10), |1\rangle = (01), \alpha_0, \alpha_1 \in \mathbb{C}$ and
 $||\alpha_0||^2 + ||\alpha_1||^2 = 1. \end{aligned}$

Example:
$$|z\rangle = \frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle$$

- We measure $|0\rangle$ with probability $||\alpha_0||^2 = \frac{1}{2}$.
- We measure $|1\rangle$ with probability $||\alpha_1||^2 = \frac{1}{2}$.

Observation

Measurement of $|z\rangle$ yields real random bit.

< ロ > < 同 > < 回 > < 回 >

Positive und negative interference

Hadamard gate

$$H = \left(\begin{array}{cc} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{array}\right)$$

Application:

$$\begin{split} |0\rangle &\mapsto \frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle \\ &\mapsto \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle \right) + \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} |0\rangle - \frac{1}{\sqrt{2}} |1\rangle \right) \\ &= \left(\frac{1}{2} + \frac{1}{2} \right) |0\rangle + \left(\frac{1}{2} - \frac{1}{2} \right) |1\rangle = |0\rangle \end{split}$$

Alexander May

э

2-qubit system and entanglement 2-qubit

$$\begin{aligned} |z\rangle &= \alpha_0 |00\rangle + \alpha_1 |01\rangle + \alpha_2 |10\rangle + \alpha_3 |11\rangle \in \mathbb{C}^4, \\ \text{with } |00\rangle &= (1000), \dots, |11\rangle = (0001), \, \alpha_0, \dots, \alpha_3 \in \mathbb{C} \text{ and} \\ \\ &||\alpha_0||^2 + ||\alpha_1||^2 + ||\alpha_2||^2 + ||\alpha_3||^2 = 1. \end{aligned}$$

Example: Application of $H \otimes H$:

$$\begin{split} |00\rangle &\mapsto \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \otimes \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \\ &= \frac{1}{2} |00\rangle + \frac{1}{2} |01\rangle + \frac{1}{2} |10\rangle + \frac{1}{2} |11\rangle \,. \end{split}$$

Entanglement: $|z\rangle = \frac{1}{\sqrt{2}} |00\rangle + \frac{1}{\sqrt{2}} |11\rangle$ (Einstein, Podolsky, Rosen)

- We measure $|0\rangle$ in first qubit with probability $||\alpha_0||^2 = \frac{1}{2}$.
- Then we always measure $|0\rangle$ in the second qubit (entanglement).

Some facts about quantum computation

n-qubit

An *n*-qubit system has 2^n many states $|0^n\rangle, \ldots, |1^n\rangle$.

- Classical computers can be simulated with quantum computers.
- Therefore quantum computers are at least as mighty.
- Quantum computers offer an amazing parallelism.
- **Example:** Evaluate function $f : \mathbb{F}_2^n \to \mathbb{F}_2^n$

$$|z\rangle = \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} |x\rangle |f(x)\rangle.$$

Good question

Does that help? Are quantum computers strictly more powerful?

	4	æ	୬୯୯
Alexander May	Quantum & IT Security		8 / 27

Topic Post-Quantum Crypto

Better: Finding a period *s*, i.e. f(x) = f(x + s) for all *x*.

Post-Quantum Crypto: Public key

- Breaks factoring/discrete log based crypto.
 - RSA
 - Diffie-Hellman
 - ElGamal
 - DSA
 - ECDSA
- Factoring/discrete log as efficient as encryption/decryption.

Rule of thumb

We have to replace our currently used public key crypto. (when having robust quantum computers with sufficiently many qubits)

Best quantum algorithm: Shor (1994)

3

イロト 不得 トイヨト イヨト

Symmetric world

Post-Quantum Crypto: Secret Key

- Rule of thumb for symmetric crypto
 - Doppel key lengths for
 - encryption,
 - authentication.
 - Increase hash length bei factor $\frac{3}{2}$.

Best quantum algorithm: Grover (1996)

Question

Why factor 2?

A (10) A (10)

Grover's algorithm (1996)

Grover function

Given
$$f : \mathbb{F}_2^n \to \mathbb{F}_2$$
 with $f(x) = \begin{cases} 1 & \text{if } x = x_0 \\ 0 & \text{if } x \neq x_0 \end{cases}$. Find x_0 .

• Classically, we need $\Theta(2^n)$ evaluations of *f*.

Grover's algorithm

On a quantum computer we only need $\Theta(2^{n/2})$ evaluations.

- We gain (only) a square root.
- But has many applications.

Example: Grover with 3 qubits

Consider $f : \mathbb{F}_2^3 \to \mathbb{F}_2$ with $f(x) = 1 \Leftrightarrow x = 011$.

Alexander May

æ

æ

æ

æ

æ

æ

æ

æ

Grover's algorithm applied to block ciphers

Block cipher

$$m \longrightarrow E_k \longrightarrow c$$

Define a Grover function

$$f(x) = \begin{cases} 1 & \text{is } E_x(m) = c \\ 0 & \text{else} \end{cases}$$

Attack

Apply Grover's algorithm to *f* for finding *k* in time $\Theta(2^{n/2})$.

E.g. breaking AES-128 requires only 2⁶⁴ steps instead of 2¹²⁸.

Sym. Crypto: Encryption/Authentication

Table: Security (in bit) of block ciphers.

Scheme	classic	quantum	
AES-128	128	64	
AES-256	256	128	

Sym. Krypto: hash functions

Table: Security (in bit) of hash functions.

Family	Scheme	Security	
		classic	quantum
SHA-3	SHA3-256 SHA3-384	128 192	85 128
		102	120

크

Quantum computer

Picture: https://www.designnews.com/electronics-test/quantum-computing-101-5-key-concepts-understand/208209538060343, C

Status of quantum computers

- Google Al Quantum: 72-qubit computer
- IBM Q: 50-qubit computer

IBM Q

- Network of 50-qubit computers.
- Freely available 5- und 16-qubit devices.
- Comfortable programming environment (quiskit).
- Quite error prone.

Breaking of RSA-1024

2048 qubits with Shor, 513 qubits with Ekera-Hastad & May-Schlieper.

$$|z
angle = rac{1}{\sqrt{N}}\sum_{x\in\mathbb{Z}_{\mathbb{N}}} |x
angle \left|a^x \bmod N
ight
angle.$$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

IBM Q

Figure: Implementation of period finding

ъ

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A

IBM Q

Figure: Period is s = 010.

э.

Summary

Lessons learned

- Quantum algorithms solve some problems faster.
 - Speed-up is small for most problems.
 - May allow for efficient simulations of quantum systems.
 - Quantum crypto does not solve all problems in crypto!
- There is progress in constructing quantum computers.
- Tuning of secret key crypto quite easy.
- RSA/Dlog in this decade save, but substitution takes time.
- We will see a shift towards PQ crypto!

向下 イヨト イヨト