
20XX

ПРИКЛАДНАЯ ДИСКРЕТНАЯ МАТЕМАТИКА

Название раздела журнала № X

УДК 512.772 DOI 10.17223/20710410/X/1
IMPLEMENTATION OF POINT-COUNTING ALGORITHMS OF

GENUS 2 HYPERELLIPTIC CURVES BASED ON BIRTHDAY PARADOX1

N. Kolesnikov

Immanuel Kant Baltic Federal University, Kaliningrad, Russia

E-mail: NiKolesnikov1@kantiana.ru

Our main contribution is an efficient implementation of Gaudry-Schost [ANTS-VI,
2004, Burlington, US] and Galbraith-Ruprai [Cryptography and Coding, 12th IMA In-
ternational Conference] point-counting algorithms on Jacobians of hyperelliptic curves.
Both of them are low memory variants of Matsuo-Chao-Tsujii [ANTS-V, vol. 2369 of
Lect. Notes in Comput. Sci., 2002] Baby-Step Giant-Step-like algorithm. We present
an optimal memory restriction (a time-memory tradeoff) that minimizes runtime of
the algorithms. This tradeoff allows us to get closer in practical computations to the-
oretical bounds of expected runtime at 2.45

√
N and 2.38

√
N for Gaudry-Schost and

Galbraith-Ruprai algorithms respectively. Here N is a size of 2-dimensional search-
ing space, which is as large as Jacobian group order, divided by small modulus m,
pre-computed by using other techniques. Our implementation profits from multi-
threaded regime and we provide some performance statistics of operation on different
size inputs. Our implementation is the first open-source parallel implementation of
2-dimensional Galbraith-Ruprai algorithm.

Keywords: Hyperelliptic curve, Jacobian, Point-counting, Birthday paradox.

РЕАЛИЗАЦИЯ АЛГОРИТМОВ ПОДСЧЕТА ТОЧЕК В ЯКОБИАНАХ
ГИПЕРЭЛЛИПТИЧЕСКИХ КРИВЫХ РОДА 2, ОСНОВАННЫХ НА

ПАРАДОКСЕ ДНЕЙ РОЖДЕНИЯ

Н.С. Колесников

Балтийский Федеральный Университет им. Иммануила Канта, г. Калининград, Россия

Представлена открытая программная реализации алгоритма Годри-Шоста [ANTS-
VI, 2004, Burlington, US] и его модификации Гэлбрайта-Рупрая [Cryptography
and Coding, 12th IMA International Conference], используемых для подсчета то-
чек в якобианах гиперэллиптических кривых. Эти алгоритмы реализуют страте-
гию Гельфонда-Шенкса и представляют собой модификацию алгоритма Мацуо-
Чао-Цуджия [ANTS-V, vol. 2369 of Lect. Notes in Comput. Sci., 2002] с меньшим
использованием памяти. Основной теоретический результат статьи – вывод оп-
тимального размера используемой памяти, позволяющего достичь минимального
ожидаемого времени работы алгоритма, близкого к 2.45

√
N и 2.38

√
N для алго-

ритмов Годри-Шоста и его модификации Гэлбрайта-Рупрая соответственно. Здесь
N – размер двумерной области поиска, равный числу точек в якобиане кривой,
уменьшенному в m раз с помощью других методов, предложенных Годри [J. of
Symbolic Computation, Vol. 47, 2012]. Алгоритм реализован в многопоточной вер-
сии, приводятся статистические данные, подтверждающие теоретические оценки.

1The publication was supported by the Russian Academic Excellence Project ‘5-100’ 2016-2020.

Point-counting algorithms of genus 2 hyperelliptic curves based on Birthday paradox 2

Ключевые слова: Гиперэллиптическая кривая, Якобиан, подсчет точек, пара-
докс дней рождения.

1. Introduction
Jacobians of hyperelliptic curves can be regarded as groups of large order that is

difficult to compute. They have many applications in cryptography, such as DLP-based
cryptosystems, where efficiency of order computing algorithms is crucial. MCT point-
counting algorithm [1] is a natural attempt to adapt a general purpose BSGS algorithm
to Jacobians of genus 2 hyperelliptic curves. This algorithm turned out to be unusable
for cryptographic size instances due to extremely large memory consumption. Gaudry and
Schost proposed [2] a low-memory version of MCT algorithm and provided experimental
implementation of their algorithm. However, the memory limit in their implementation
must be set by a user, and the authors do not give optimal values for this memory limit.

Our main contribution is an efficient multithreaded implementation of Gaudry-Schost
point-counting algorithm with optimal memory setting that can be viewed as a time-
memory tradeoff. We also implement an improvement of Gaudry-Schost algorithm, proposed
by Galbraith and Ruprai [3], and test the performance of both algorithms. This is the first
open source implementation of 2-dimensional Galbraith-Ruprai algorithm.

The paper is organized as follows. In section 3 we give a review of the most efficient
BSGS-like techniques proposed by Gaudry and Schost [2], Galbraith and Ruprai [3]. Both of
them have heuristic complexity analyses, based on the birthday paradox. These algorithms
use the strategy of pseudo-random walks and store in RAM only a portion of points
computed on “baby” and “giant” steps. In section 4 we describe an efficient data structure to
store distinguished points and an optimal storage size to reach the tradeoff between time and
memory. Section 5 describes our implementation of Gaudry-Schost and Galbraith-Ruprai
algorithms and shows some statistics on their performance.

2. Preliminaries
We consider genus g = 2 hyperelliptic curves defined over a finite field Fq with prime

q > 2. The curve is defined by equation

C : y2 = x2g+1 +

2g∑
i=0

fix
i.

A set of all reduced divisors of a curve form a group Jac(C), that is called a Jacobian
of a curve. Its elements sometimes are regarded as “points”. The group law (point addition)
on Jacobian is defined by Cantor’s addition formulas. We normally write reduced divisors
in Mumford coordinates D = (u(x), v(x)), where u(x) and v(x) are polynomials, such that
deg v(x) < deg u(x) 6 g. For further details on these algebraic structures we refer to [4].

We denote by χ(T) the characteristic polynomial of the Frobenius endomorphism πC on
Jac(C):

χ(T) = T 4 − s1T 3 + s2T
2 − qs1T + q2.

Point-counting algorithms of genus 2 hyperelliptic curves based on Birthday paradox 3

3. Review of Birthday-paradox algorithms
3.1. G a u d r y - S c h o s t

Following Gaudry and Schost [5], before launching an exponential MCT point-counting
algorithm, one can calculate #Jac(C) (mod m), where m = `k11 · . . . · `kss , and `i are small
primes. The cost of computing #Jac(C) (mod `) takes O(log7(`)) operations [5, p. 2] in Fq.
Practically we computed #Jac(C) modulo ` 6 43, that took ∼ 40 Gb of RAM.

After gathering some modular information about #Jac(C), we proceed to the
exponential Gaudry-Schost point-counting algorithm. The desired order of the Jacobian
can be computed by substituting T = 1 into Frobenius characteristic polynomial

#Jac(C) = χ(1) = q2 + 1− s1(q + 1) + s2. (1)

Thus, we have to find two values s1 and s2. We write them in the form si = si + ms̃i,
i = 1, 2 assuming that we have s1, s2 precomputed. This reduces our search space for a
tuple of unknowns (s̃1, s̃2) to the following bounds [2, p. 3]:

−
√
q

m
6 s̃1 6

√
q

m
,−2q

m
6 s̃2 6

6q

m
. (2)

Then we proceed as follows. We choose a random divisorD ∈ Jac(C) and try to compute
its order. As the order ord(D) divides the group order #Jac(C), we have χ(1) · D = 0.
Combining this equation with (1) gives

(q2 + 1− s1(q + 1) + s2) ·D + (−s̃1(q + 1) + s̃2) ·m ·D = 0. (3)

We form the two sets of divisors – W (“Wild”) and T (“Tame”) and enumerate elements
in these sets until we find a point belonging to both W and T (a collision). A constant
K ′ contains known terms of (3) and a correction term to make the bounds (2) on s̃1, s̃2
symmetric. We later subtract this correction term once we find a collision.

W = {K ′ ·D + (−σ1(q + 1) + σ2) ·m ·D; (σ1, σ2) ∈ R},

T = {(−σ1(q + 1) + σ2) ·m ·D; (σ1, σ2) ∈ R},

R = [B1,min, B1,max]× [B2,min, B2,max],

B1,min = −
√
q

m
B1,max =

√
q

m
B2,min = −2q

m
B2,max =

6q

m
,

K ′ = q2 + 1− s1(q + 1) + s2 +m · (−bB1,min +B1,max

2
c(q + 1) + bB2,min +B2,max

2
c).

Two colliding points DW = (σ1W , σ2W) and DT = (σ1T , σ2T) give us unknown values
s̃1, s̃2 by the following equations derived from (3):

s̃i = σi,W − σi,T + bBi,min +Bi,max

2
c, i = 1, 2. (4)

Time complexity of the algorithm sketched above depends on the cardinality of the
intersection |W ∩ T | which lies in the interval [0.25|R|..|R|] depending on the curve given.
The expected number of points to be constructed until we get a collision is

√
π · |W ∩ T |,

that follows from a theorem below. Thus, the expected number of points in the best, worst
and average [6] cases are 1.77|R|, 3.54|R| and 2.43|R| respectively.

Point-counting algorithms of genus 2 hyperelliptic curves based on Birthday paradox 4

Theorem 1 (Tame-Wild birthday paradox). Suppose that we have two urns both
containing M balls numbered from 1 to M . The first urn contains only white balls, the
second - only red balls. We are choosing the ball uniformly at random in course from the
first and the second urn, save its number and color, and return the ball to urn. Then the
expected number of selections until we get two colliding numbers of different colors is

√
πM +O(1).

We denote by P(M,m1,m2) the probability that after m1 steps in urn 1 and m2 steps
in urn 2 no matches were found. Nishimura and Sibuya prove in [7] that if we are restricted
to m1 = m2 = m = O(

√
M), M →∞, this probability tends to

P(M,m,m)→ exp

(
−m

2

M

[
1 +O

(
1√
M

)])
≈ exp

(
−m

2

M

)
.

Let X be a random variable that represents the number of selections of any urn before
we get a collision. Then the cumulative distribution function is

FX(m) = 1− P(X > m) = 1− P(M,m,m).

This fact is used to calculate the expectation of X that gives

E(X) =

√
πM

2
.

.
Remark 1. One should note that if we fix the input parameters (Fq, C,m) and run

the Gaudry-Schost point-counting algorithm several times, the best and the worst running
time estimates could not be compared with the values 1.77|R| and 3.54|R|. To estimate the
deviation on running time with fixed input, we need to compute the variance V ar(X) of
the random variable above. This deviation we will use in practical experiments.

E(X2) =
∞∑
i=1

i2 · P(X = i) =
∞∑
i=1

i2 · P(X > i− 1)−
∞∑
i=1

i2 · P(X > i) =

=
∞∑
i=0

(i+ 1)2 · P(X > i)−
∞∑
i=1

i2 · P(X > i) =

∞∑
i=0

(2i+ 1) · P(X > i) =

∫ ∞
i=0

(2i+ 1) · exp
(
− i

2

M

)
di =∫ ∞

x=0

2x · exp
(
−x

2

M

)
dx+

∫ ∞
x=0

exp

(
−x

2

M

)
dx =M +

√
πM

2
,

V ar(X) = E(X2)− (E(X))2 =M ·
(
1− π

4

)
+

√
πM

2
.

Thus, the standard deviation for X is given by

√
V ar(X) =

M→∞

√
1− π

4
·
√
M ≈ 0.46

√
M.

Point-counting algorithms of genus 2 hyperelliptic curves based on Birthday paradox 5

Gaudry and Schost in [5] also present an approach of random walks and distinguished
points that significantly reduces memory requirement of the algorithm. The idea is to name
a portion of points in the search space R as “distinguished” points. This is done by selecting
an appropriate hash function and looking on some bits of each hash value. As before, we
choose a random divisor D ∈ Jac(C), calculate its hash value h(D). This value determines
the direction of a random walk. The next divisor we choose is D + Oh(D), where “O” is a
short list of precomputed shifts that defines the behavior of a random walk. We continue
the walk unless a distinguished point is hit. As soon as this happens, the distinguished point
is saved to an appropriate W or T list. Although the points in the constructed chain are
not taken from the search space uniformly at random, the complexity analysis, based on
the Tame-Wild birthday paradox, heuristically remains valid. However, an average runtime
and memory requirements vary depending on the random walk parameters. We discuss the
optimal random walk set up in section 4.

3.2. G a l b r a i t h - R u p r a i
Galbraith and Ruprai proposed [3] an improvement for Gaudry-Schost algorithm,

described above, that reduces the search space R in a tricky way, and makes the cardinality
of intersection |W ∩ T | constant for all curve instances. As a result, the expected number
of points to be constructed in any of the cases: best, worst, or average is invariant and
equals to 2.38|R|. The notions of random walks, distinguished points and its complexity
analysis remains the same. The search space and Tame-Wild sets are defined as follows: the
Tame searching rectangle is reduced in length and width by 2/3 times, while Wild searching
rectangle is constructed as a union of 4 disjointed “corners” of R.

RT = [
2

3
B1,min,

2

3
B1,max]× [

2

3
B2,min,

2

3
B2,max],

RW = [B1,min, B1,min +
1

3
(B1,max −B1,min)]× [B2,max, B2,max −

1

3
(B2,max −B2,min)] ∪

[B1,max, B1,max −
1

3
(B1,max −B1,min)]× [B2,max, B2,max −

1

3
(B2,max −B2,min)] ∪

[B1,min, B1,min +
1

3
(B1,max −B1,min)]× [B2,min, B2,min +

1

3
(B2,max −B2,min)] ∪

[B1,max, B1,max −
1

3
(B1,max −B1,min)]× [B2,min, B2,min +

1

3
(B2,max −B2,min)].

W ′ = {K ′ ·D + (−σ1(q + 1) + σ2) ·m ·D; (σ1, σ2) ∈ RW},
T ′ = {(−σ1(q + 1) + σ2) ·m ·D; (σ1, σ2) ∈ RT},

Random walks on T ′ and W ′ operate similar to the Gaudry-Shost algorithm. The only
difference is that we choose a random divisor that initiates a chain in one of the corners of
RW and do not jump to another corner. The number of distinguished points belonging to
any corner of RW is 1/4 of distinguished points belonging to T . We also change the step
size of precomputed shifts “O” to prohibit overjumping the searching area, this problem is
the point of discussion in section 4.

4. Time-memory tradeoff for Gaudry-Schost algorithm
First we describe the aspects of our implementation. We will use the following notations:

— E is the expected number of distinguished points to be stored, i.e. the expected
memory requirement of the algorithm. Note that the actual memory size to store one
distinguished point is about 7 log q+O(1) bits. The associated data structure contains 5

Point-counting algorithms of genus 2 hyperelliptic curves based on Birthday paradox 6

long integers of size q, representing a divisor in Mumford coordinates (u0, u1, u2, v0, v1),
2 long integers σ1, σ2 ∈ R, encoding a position of the point in a searching rectangle, a
hash value of a divisor, that is a 32-bit integer, and a boolean value indicating Wild or
Tame walk.

— θ is the probability for a random point D ∈ {T,W} to be a distinguished point. It is
easy to see that the expected length of a chain of a random walk is U = 1/θ. Following
Gaudry, we use a 32-bit hash function, that has a weak correlation with arithmetic
properties of a point. We consider a point to be distinguished iff some bits in a hash
value are equal to zero. Thus, the probability of being distinguished can be customized
stepwise starting from 1/32, 1/16, 3/32 and so on.
We store all distinguished points in a single array. We do not sort this array directly

because the points itself are rather “heavy” as noted above, and their relocation will lead
to suboptimal time. Instead of this, we store an additional vector of pointers. This vector
addresses the elements sorting them by hash value. That is why the hash value is stored
together with a point itself. As soon as a distinguished point is hit, we save it to the end of
the main array, that has O(1) time complexity. Then we find an appropriate position for
this point in a sorted list of pointers, that is done in O(logE) by binary search. Then we
insert a new pointer to the list, that also has time complexity O(1).

Proposition 1. The time complexity of our Gaudry-Schost implementation (in
average case for a random curve) is given by

T = α +
1

θ
+ E · log2E (operations in Fq), where (5)

α = 2.43(1 + ε)
√
|R| for Gaudry-Schost algorithm;

α = 2.38(1 + ε)
√
|RT | for its Galbraith-Ruprai improvement.

On the proof. The value α in (5) is an expected number of points in the search space to
be enumerated until we find a collision. Evaluation of α relies on the Tame-Wild birthday
paradox and can be found in [2], [6]. To start a new random walk, we choose a point
uniformly at random, that takes constant time. Each step in a random walk requires one
group operation in Jac(C), that can be done in time O(1) of operations in Fq by applying
explicit formulas [8]. There are two kind of “bad” points that could not be accounted when
applying the Tame-Wild birthday paradox:
1) Points that give a cycle in a random walk. Once we get a loop, a random walk will never

hit a distinguished point, and must be aborted. Van Oorschot and Wiener showed [9]
that if we restrict the maximum length of a chain to 20/θ, then the number of such
“bad” points is at most 5 · 10−8.

2) Points that lie outside the search space R, RT or RW . To reduce the number of such
overjumps, we follow Gaudry-Schost [2] and make the precomputed shifts O not greater
than

`2 =
(B2,max −B2,min) · θ

10
, `1 =

(B1,max −B1,min) ·
√
θ

9

for both directions. Thus, the expected length of a chain is one tenth of the search space
R in both σ1 and σ2 directions. “Bad” points of this type give a correction factor (1+ ε)
to the Tame-Wild birthday paradox theorem, where ε, following [3] is a small factor
between 0.02 and 0.04.
The term 1/θ in (5) takes into account the length of the last chain because a collision may

occur in any intermediate point of a walk. However the walk continues up to distinguished

Point-counting algorithms of genus 2 hyperelliptic curves based on Birthday paradox 7

point. The last term E · log2E is the time wasted on binary search in W or T lists to find
a collision.

Proposition 2. The memory restriction that gives us a time-memory tradeoff for our
implementation is

E =

√
2α ln 2

log(2α ln 2)
,

where α is defined in Proposition 1.
Proof. Rewrite equation (5), assuming 1/θ is an average length of a chain and E is a
number of chains constructed:

T = T (E) = α +
α

E
+ E · log2E.

Find the minimum value of time function T (E):

T ′(E) = − α

E2
+ log2E +

1

ln 2
= 0.

The only critical point that is a point of local minimum for a function T (E) is

E =

√
D√

W (D)
=
√
eW (D) ≈

√
elogD−log logD =

√
D

logD
,

where D = 2α ln 2 and W is a Lambert W function.

5. Implementation and tests
5.1. G e n e r a l d e s c r i p t i o n

We present an optimized implementation of Gaudry-Schost and Galbraith-Ruprai point-
counting algorithms. This is a fork from Gaudry’s NTLJac2 [10] package. This package is
implemented in C++ and extends the Number Theory library (NTL) with special tools for
Jacobians of genus 2 hyperelliptic curves. It contains data structures to represent divisors on
a curve and its arithmetic. On top of Gaudry’s package we added the efficient data storage
for the distinguished points as described in Section 4 and implemented an improvement
proposed by Galbraith and Ruprai. Moreover, we made our implementation multithreaded.

5.2. R u n s o n d i f f e r e n t c u r v e s
First we collected some statistics to test Gaudry-Schost time complexity and compare

it with those of Galbraith-Ruprai improvement. We fixed a field Fq with q = 245 + 59,
randomly generated N = 300 curves and for each of them computed s1, s2 modulo m =
3 · 5 · 7 · 11 = 1155. As noted in Remark 1, this is not correct to run an algorithm once
to evaluate its runtime. So for each curve we did n = 30 runs, and calculated an average
runtime and number of stored distinguished points. Remark 1 shows that for n = 30
experiments the standard deviation on the number of distinguished points reduces from
0.92
√
M to 0.92√

n

√
M ≈ 0.17

√
M . Thus, the number of distinguished points constructed for

each curve deviates on average 0.17/2.54 ≈ 6.7% of theoretical value. This deviation is still
quite significant but allows to select “the best” and “the worst” curve instances.

We did the same experiment for Gaudry-Schost algorithm and its improvement. All
of the N = 300 curves are sorted by the quantity of distinguished points constructed on
average. The number of a curve tested is placed on the X-axis, whereas the quantity of
stored points (fig. 1(a)) or overall elapsed time (fig. 1(b)) – on Y -axis. The expected quantity
of distinguished points to be stored is E = 2282 for the above input, which agrees with our
statistics.

Point-counting algorithms of genus 2 hyperelliptic curves based on Birthday paradox 8

(a) – memory (b) – time

Fig. 1. Gaudry-Schost and Galbraith-Ruprai algorithms. Performance on different curves.

5.3. S e v e r a l r u n s o n t h e s a m e c u r v e
The aim of running our software on a fixed curve is to test the time-memory tradeoff

bound, stated in Proposition 1. We selected N = 3 curves from the test above, that are
close to the best, worst, and average cases of the Gaudry-Schost algorithm. We modified
the parameter E to E/2, E/4, 2E, 4E and E = 1000 as proposed by Gaudry. For each
value we run the software n = 100 times. This guarantees that the experimental number of
stored distinguished points deviated from its theoretical value 3.6% on average. According
to proposition 2, the time-memory tradeoff for our input data requires to store E = 2282
points (for Gaudry-Schost algorithm) and E = 1890 for its Galbriath-Ruprai improvement.

All performance tests described above have been executed on Xeon E-2146G 6C
3.50GHz, system RAM available is 16GB. The software is compiled with gcc 9.3.0 compilers
under Ubuntu 20.04 operating system.

Ta b l e 1 Gaudry-Schost performance on different memory restrictions.

E = 456 E = 1141
E = 2282
(tradeoff) E = 4564 E = 11410 E = 1000

C
ur

ve
1

Dist. points 494 1037 1892 3828 7553 1086
Time, s. 104.8 109.6 98.9 100.3 98.8 112.8

C
ur

ve
1
2
0 Dist. points 493 1195 1907 4183 8006 1207

Time, s. 103.5 124.8 99.1 109.4 106.3 126.7

C
ur

ve
3
0
0 Dist. points 623 1180 2248 4646 10986 1326

Time, s. 131.9 123.5 117.2 123.4 144.6 138.6

Ta b l e 2 Galbraith-Ruprai improvement on different memory restrictions.

E = 378 E = 945
E = 1890
(tradeoff) E = 3780 E = 9450

C
ur

ve
1

Dist. points 491 1121 1910 4572 20354
Time, s. 102.8 117.3 100.3 120.7 136.9

C
ur

ve
1
2
0 Dist. points 660 1239 2082 4237 19855

Time, s. 138.0 129.7 109.6 108.8 131.5

C
ur

ve
3
0
0 Dist. points 635 1140 2217 4113 19233
Time, s. 133.9 119.9 116.2 112.4 127.6

6. Conclusion
We presented efficient implementations of two BSGS-like point-counting algorithms

based on birthday paradox. A time-memory tradeoff has been provided for both algorithms.

Point-counting algorithms of genus 2 hyperelliptic curves based on Birthday paradox 9

It allows us to minimize the runtime by allocating enough memory. We did not test our
implementation on cryptographic size input, as we were unable to precompute s1, s2 for
sufficiently large moduli m. However, we believe our implementation might be useful for
computations with any size of Jacobians, in combination with other techniques. The source
code of our implementation can be found here: https://github.com/kn02262/Jac2pc

REFERENCES
1. K. Matsuo; J. Chao; S. Tsujii. An improved baby step giant step algorithm for point counting

of hyperelliptic curves over finite fields. In C. Fiecker and D. Kohel, editors, ANTS-V, volume
2369 of Lecture Notes in Comput. Sci., pages 461–474. Springer-Verlag, 2002.

2. P. Gaudry; E. Schost. A low-memory parallel version of Matsuo, Chao and Tsujii’s algorithm.
ANTS-VI, Burlington, United States. pp.208-222. 2004.

3. S. Galbraith; R. Ruprai. An Improvement to the Gaudry-Schost Algorithm for
Multidimensional Discrete Logarithm Problems, 5921. pp.368-382. 2009.

4. H. Cohen; G. Frey; R. Avanzi; C. Doche; T. Lange; K. Nguyen; F. Vercauteren. Handbook of
Elliptic and Hyperelliptic Curve Cryptography, CRC Press. 2005.

5. P. Gaudry; E. Schost. Genus 2 point counting over prime fields, Journal of Symbolic
Computation, Volume 47, Issue 4, Pages 368-400. 2012. ISSN 0747-7171.
https://doi.org/10.1016/j.jsc.2011.09.003

6. R. S. Ruprai. Improvements to the Gaudry-Schost Algorithm for Multidimensional discrete
logarithm problems and Applications - PhD Thesis. Department of Mathematics, Royal
Holloway University of London. 2010.
https://www.math.auckland.ac.nz/~sgal018/Ruprai-thesis.pdf

7. K. Nishimura; M. Sibuya. Probability to meet in the middle. Journal of Cryptology, 2:13–22,
1990.

8. H. Hisil, C. Costello. Jacobian Coordinates on Genus 2 Curves. J Cryptol 30, 572–600. 2017.
https://doi.org/10.1007/s00145-016-9227-7

9. P.C. van Oorschot, M.J. Wiener. Parallel collision search with cryptanalytic applications.
Journal of Cryptology 12, 1–28, 1999.

10. P. Gaudry —C++ NTLJac2 Library, 2003
http://www.lix.polytechnique.fr/Labo/Pierrick.Gaudry/NTLJac2

КОЛЕСНИКОВ Никита Сергеевич — младший научный сотрудник лаборатории
математических методов защиты и обработки информации Балтийского Федерального
Университета им. И. Канта г. Калининград. E-mail: NiKolesnikov1@kantiana.ru

