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I. Introduction
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Definitions

Multiquadratic field:

K = Q(
√
d1, . . . ,

√
dn)

Class group ClK:
• quotient of fractional ideals modulo principal ideals
• S = {p1, . . . , pd} is a set of prime ideals that generates ClK
• ClK ' 〈g1〉 × . . . × 〈gk〉

Discrete logarithm problem (DLP) in ClK:

Given an ideal I, find integers ℓ1, . . . , ℓk s.t. [I] = [gℓ11 · . . . · gℓkk ].

Note: DLP for I =
d∏

i=1

peii is simple.
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Ideals and lattices

Letm = 2n = degK and σ1, . . . , σm are
r1 + 2r2 complex embeddings of K.

Lattice in Rm:

Λ = Zb1 ⊕ . . . ⊕ Zbr

for linear independent
vectors b1, . . . , br ∈ Rm.

b1

b2

Canonical embedding:

σ : K → Rm, α 7→ (σ1(α), . . . , σm(α)).

An ideal I is a lattice under canonical embedding: σ(I).
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Shortest vector problem (SVP)
γ-SVP: find a vector v ∈ Λ s.t. v = γ · λ1(Λ).

• λ1(Λ): Euclidean norm of the shortest
vector in Λ.

• γ: approximation factor

b1

b2

Hard problem in general: subexponential γ in subexponential
time (BKZ)

[CDW17]+ cyclotomics: subexponential γ in polynomial time

[BBVLV17] multiquadratics: short generators in principal ideals
(SPIP) in quasi-polynomial time, γ = ?

Our goal: finding short vectors in non-principal ideals of
multiquadratic field.
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Ideal lattices: bounds for shortest vector

√
m · N(I)1/m ≤ λ1(I) ≤

√
m ·

√
|∆K|

1/m

N(I)1/m
(
2

π

)r2/m

Lower bound is a special property of ideal lattices.

⇓
λ1(I) is known up to factor DK =

√
|∆K|

1/m

• simplifies analysis of γ when DK is small
• DK ≈ m for cyclotomics
• DK ≈ quasipoly(m) for multiquadratics
(assuming D = d1 · . . . · dn = quasipoly(m))
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Closest vector problem (CVP)

γ-CVP: Given a vector t ∈ Rm find x ∈ Λ s.t.
‖x− t‖≤ γ‖y− t‖ for all y ∈ Λ.

• hard problem in general
• easy case 1: short basis
• easy case 2: orthogonal basis

tx

γ-SVP in ideal lattices is solved using reduction to easy cases
of γ-CVP.
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Finding short vectors in non-principal ideals

Approach of [CDW17] and [BLNR22] for cyclotomics (Sketch):

1 Compute DLOG for a target ideal
2 Build short basis for the Log-S-unit lattice

(Stickelberger ideal + tricks)
3 Reduce result of DLOG computation:

• using Log-S-unit lattice and its short basis (Babai’s alg.)
• using Log-unit lattice (SPIP)

In this talk we consider first step for multiquadratic fields and
determination of γ for SPIP.
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Algorithm for solving γ-SVP in multiquadratics

Adaption of [CDW17] and [BLNR21] to multiquadratics:

1 Solve DLOG in ClK for a target ideal I:
find g and α⃗ s.t. I = g

∏
i p

αi

i

2 Build a short basis for LogS-unit lattice Λ

3 Reduce α⃗ in Λ using the short basis:
β⃗ = CVP(Λ, α⃗)

g = g/
∏

j γ
βj

j

4 Reduce g in Log-unit lattice:
return SPIP(g)
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II. Discrete logarithm problem
1 Reducing the problem to subfields
2 Square root of decomposed ideal
3 Algorithm for DLOG
4 Experiments

11



Reducing the problem to subfields
Multiquadratic fields admit norm relation:

I2 =
Iσ · Iτ
σ(Iστ)

=
NK/Kσ

(I) · NK/Kτ
(I)

σ(NK/Kστ
(I))

where σ, τ are order 2 automorphisms, and Kσ, Kτ, Kστ are fixed
fields.

⇓
1 Find DLOGs for Iσ, Iτ, Iστ in subfields Kσ, Kτ, Kστ

2 Combine this data to obtain DLOG for I2:

I2 = α

d∏
i=1

peii

3 Compute square root of α
d∏

i=1

peii that is equal to I.
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Square root of decomposed ideal
Problem:
Given an ideal I and I2 = α

d∏
i=1

peii find α ′ and f1, . . . , fd s.t.

I = α ′
d∏

i=1

pfii .

Idea: reduce the problem to cyclic subgroups of

ClK ' 〈g1〉 × . . . × 〈gk〉 ' Cb1 × . . . × Cbk .

• This gives us multiple square roots (up to 2k).
• Use saturation technique to efficiently select correct
square root.

Note: We assume that αOK 6=
d∏

i=1

pai

i , otherwise the problem is

trivial.
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Saturation technique

FindSquare: Allows us, for a given set T = {a1, . . . , am} ⊂ K and
an element h ∈ K, to find efficiently the set of exponent
vectors e⃗ such that h · ae1

1 · . . . · aem
m is a square.

• described and used for multiquadratics in prior work
• based on quadratic characters computation

Example: Let I = hOK and T is a set of generators of O×
K . Then

√
I =

√
h · ae1

1 · . . . · aem
m OK
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Square roots in cyclic groups

TLDR. Taking square roots is simple since we know the
generators.

Consider finding square root of ge in cyclic group 〈g〉 of order b.

CycSqrt:
1 If b is odd then square root is ge(

b+1
2

).
2 Let b = 2r · t where t is odd. Then

√
ge ∈ {b, b · g

b
2 },

where b = ge(
t+1
2

) · (gt)−
ℓ
2 for ℓ = DLOGgt(g

t·e).
Since#

〈
gt

〉
= 2r computing the DLOG is simple.

* Carl Pomerance. Elementary thoughts on discrete logarithms.
https:∕∕math.dartmouth.edu∕~carlp∕PDF∕dltalk4.pdf
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Applying CycSqrt to our ideal

I2 = α

d∏
i=1

peii ⇒ [I2] = [
d∏

i=1

peii ] = [
k∏

j=1

g
gj
j ]

⇓ CycSqrt ⇓
[I2] = [

k∏
j=1

(a
xj
j bj)

2], xj ∈ F2.

Then we have

I2 =
αβ
k∏

j=1

α
xj
j

k∏
j=1

(a
xj
j bj)

2,

where a2j = 〈αj〉 and
d∏

i=1

peii /
∏k

j=1 b
2
j = 〈β〉.
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Now, we can write the ideal I as

I =

√√√√√√
αβu
k∏

j=1

α
xj
j

k∏
j=1

a
xj
j bj

for some u ∈ O×
K and any suitable set of xj.

Problem: there are 2k variants of x to enumerate.

Solution: apply the saturation technique (FindSquare).
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Complete IdealSqrt algorithm
Input: An ideal I2 = α

d∏
i=1

peii

Output: The ideal I = α ′
d∏

i=1

pfii

1 Compute g s.t.
d∏

i=1

peii =
k∏

j=1

g
gj
j

2 Compute (ajbj, bj) = CycSqrt(g
gj
j ) for all j = 1, . . . , k

3 Compute β ∈ K, s.t. βOK =
d∏

i=1

peii /
k∏

j=1

b2j

4 Compute αj ∈ K, s.t. αjOK = a2j

5 Compute generators u1, . . . , ur of O×
K

6 x = FindSquare(α · β,α−1
1 , . . . , α−1

k , u−1
1 , . . . , u−1

r )

7 Return
√√√√ αβ

k∏
i=1

α
xi
i

r∏
i=1

u
xi+k
i

k∏
j=1

a
xj
j bj
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Algorithm for DLOG

Input: an ideal I of multiquadratic field K = Q(
√
d1, . . . ,

√
dn).

Output: the ideal I represented by a pair (α ′, f) ∈ K × Zd such

that I = α ′
d∏

i=1

pfii .

1 if [K : Q] = 2 then compute DLOG with Buchmann-Düllmann
2 Select distinct σ, τ, στ ∈ GK of order 2
3 Iσ = NK/Kσ

(I), Iτ = NK/Kτ
(I), Iστ = NK/Kστ

(I)

4 Jσ = mqCLDL(Iσ, Sσ) for Sσ = {p ∩ Kσ | p ∈ S}

5 Jτ = mqCLDL(Iτ, Sτ) for Sτ = {p ∩ Kτ | p ∈ S}

6 Jστ = mqCLDL(Iστ, Sστ) for Sστ = {p ∩ Kστ | p ∈ S}

7 J = Lift(Jσ) · Lift(Jτ)/Lift(σ(Jτσ)) = α ·
d∏

i=1

pei

i = I2

8 Return IdealSqrt(J)
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Complexity

K = Q(
√
d1, . . . ,

√
dn)

• D = d1 · . . . · dn is the largest discriminant of quadratic
subfield of K

• S = {p1, . . . , pd} is a set of all prime ideals generating the
ideal class group ClK

Main theorem

Let I be an ideal of K and m = degK. Then computing
exponents f1, . . . , fd such that I = α ′ ∏

i p
fi
i for some α ′ ∈

K takes time
eÕ(max(logm,

√
logD))

field operations.

to be compared with: L∆K
(1/2) = eÕ(

√
m logD)
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Experiments

Table 1: DLOG computation for multiquadratic fields.

degK Field Alg. 5 Sage ClK
16 real 325 0.19 C2

4

32 real 1607 64 C2 × C4 × C4
8

64 real 4743 - C9
2 × C3

4 × C8 × C4
16 × C48 × C240

16 imag. 159 0.41 C8 × C48

32 imag. 1487 26 C2 × C3
4 × C24 × C2

48 × C3360

64 imag. 3941 - C2
2 × C9

4 × C3
8 × C16 × C48 × C2

96×
C2

2 × ×C2
192 × C2

6720 × C927360

* Timings are given in seconds.

• Implementation is made in SageMath v.10.0
• Computations were done on Intel Core i7-8700 clocked at
3.20GHz and 64 GB of RAM.
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III. Shortest principal ideal problem
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State of the art

[BBVLV17]: reducing the problem to quadratic subfields for
multiquadratics.

• generalized to multicubics, Kummer fields, …
• quasi-polynomial time complexity inm

• analysis of approximation factors is missing

I present the analysis in this talk.
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Log-unit lattices
Used for reduction of principal ideal generators.

Log-embedding:

Log : K → Rm

α 7→ (log|σ1(α)|, . . . , log|σm(α)|)

Log-unit lattice: LogO×
K .

multiquadratic Log-unit lattice: LogU×
K .

• U×
K : group generated by fundamental units from quadratic

subfields of K.
• basis is not short =⇒ can’t use methods from cyclotomics
• orthogonal lattice =⇒ CVP is polynomial time
• (O×

K )
m ⊆ U×

K =⇒ can reduce CVP from LogO×
K to LogU×

K
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SPIP

Theorem

Let I be a principal ideal and D is quasi-polynomial inm.
If ∃ a generator g such that

Log(g) =
m−1∑
i=1

ci Log(εi) + c · 1⃗

where ci <
1
2m

then g is unique and it can be computed in
quasi-polynomial time inm.
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Proof

We apply method from §8.4 in [BBVLV’17].
1 find a generator gu of I
2 um is multiquadratic unit for any unit u
3 solve CVP formLog(gu) =⇒ um and so, we know ±gm

(mLog(g) has coefficients < 1
2

=⇒ rounded to zero)
4 compute g by successive square root computations
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Which ideals satisfy conditions of theorem?

Asymptotic bound:

‖g‖2 =
√
m · eO(D1/2+o(1))N(I)1/m.

For comparison: the shortest element of ideal is bounded
above as:

λ
(2)
1 = O(

√
mD1/4N(I)1/m).

However, we don’t know how the shortest generator differs
from the shortest element.

• for cyclotomics: eO(
√
m)λ

(2)
1 for most of princ. ideals

• open problem for multiquadratics in general case.
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Size of principal ideal generator (general case)

Theorem

Every principal ideal I of a multiquadratic field K has a
generator g such that

‖g‖≤ m · eD1/2+o(1)N(I)1/m.

Proof (Sketch):

Adaptation of result from [CDPR’16] from cyclotomics. Use
covering radius of the lattice Log(UK) and bounds for the
lengths of its basis.

Consequence: we can compute shortest generators of almost
all ideals in quasi-polynomial time.
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Ideals in crypto

Heuristics from [BBVLV17, §8.1]: for secret generator we
have |ci|=

(
1√

mD1/2+o(1)

)
with probability→ 1 when D is big

enough.

Approximation factor: γ = eÕ(
√
m).

Proof: for ideal lattices the upper and lower bounds for the
shortest vector differs only by the factor D1/4.

Complexity: computation in quasi-polynomial time inm

when D = quasipoly(m).
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IV. Reduction modulo S-units: overview
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Log-S-unit lattices

Used for obtaining short elements of ideals.

Let S = {p1, . . . , pd} is a set of prime ideals
• usually we take S that generates ClK

s ∈ K is a S-unit if sOK = pe11 · . . . · pedd for some e1, . . . , ed ∈ Z.

S-unit group: O×
K,S = all S-units.

Log-S-unit lattice: LogS(O×
K,S), where

LogS : s 7→ (vpi)i=1,...,d.
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Reduction

In adaption of [CDW17] and [BLNR21] to multiquadratics:

1 Solve DLOG in ClK for a target ideal I:
find g and α⃗ s.t. I = g

∏
i p

αi

i

2 Build a short basis for LogS-unit lattice Λ

3 Reduce α⃗ in Λ using the short basis:
β⃗ = CVP(Λ, α⃗)

g = g/
∏

j γ
βj

j

4 Reduce g in Log-unit lattice:
return SPIP(g)
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Short bases: candidates

Stickelberger ideal SK:
• used in [CDW17] and [BLNR22] for cyclotomics
• short basis of ideal in [BK21]

But SK is not full-rank.

There two approaches to fix this:
• random walk to CL−K [CDW17]

=⇒ h+
K steps

=⇒ bad choice for multiquadratics
• lattice of real relations [BLNR22]
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Stickelberger ideal for multiquadratics

[Kučera96]: description of ideal using restriction/correstriction
from cyclotomic field

• K is abelian field =⇒ subfield of a cyclotomic field

[KMNO21]: algorithmization of Kucera’s work.
• K ⊂ Q(ζt) for t ≈ D =⇒ basis is not short (when
adapting [BK21])

Open problem: find short bases from generators of SK and real
class group relations.
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Conclusion

Currently, we can solve γ-SVP with γ = eÕ(
√
m) for principal

ideals with short generators.

Discrete logarithm problem can be solved in quasi-polynomial
time.

Remaining open problem: building short bases for LogS-unit
lattice.
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Outline

γ-SVP

CLK[BV’19]

DLOG (this work)

SPIP [BBVLV17]

reduction mod S-units

Stickelberger
ideal [KMNO22]

Short bases?

36



Contact

snovoselov@kantiana.ru

crypto-kantiana.com/semyon.novoselov
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