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Definitions

Multiquadratic field:

K = Q(Jdr, -,/
Class group Cl:

» quotient of fractional ideals modulo principal ideals
S ={pq4,..,py} is a set of prime ideals that generates Cl

Discrete logarithm problem (DLP) in Clk:
Given an ideal I, find a« € K and integers ¢4, ..., €4 S.1.
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|deals and lattices

Letm = 2" = degK and oy, ...,0,,, be r;, + 21, complex
embeddings of K.

Lattice in R™;
A=Zb, D ..®OZb,

for linear independent vectors by, ..., b, € R™.

Canonical embedding:

o: K= R a - (loy(@)], ..., |om(a)])

An ideal | is a lattice under the canonical embedding: a(I).
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Shortest vector problem (SVP)

y-SVP: findavectorve As.t. ||v]| =y 1;(A)

e 1, (N): (Euclidean) norm of the shortest non-zero vector in A
 y: approximation factor

Hard problem in general: subexponential y in subexponential time @ :
(BKZ)

cyclotomics: subexponential y in polynomial time

multiquadratics: short generators in principal ideals
(SPIP) in quasi-polynomial time, y =?

Our work: finding “mildly” short elements in non-principal ideals of
multiquadratic field in quasi-polynomial time.




|deal lattices: bounds for shortest vector

1 ’ m
V- N < A, () < v - JTAg ™ N (E)

Lower bound is a special property of ideal lattices:
1

* A,(1) is known up to factor Dy = /|Ag|™
* D, = m for cyclotomics

* D, = quasipoly(m) for multiquadratics
(assuming D = d, - ... d,, = quasipoly(m))



Closest vector problem (CVP)

y-CVP: Given a vector t € R™ find x € A s.t.
Ix —t|| < ylly —t|| forall y € A. °

e hard problem in general °
 easy case 1: known short basis
» easy case 2: known orthogonal basis

We solve y-SVP in ideal lattices using
reduction to easy cases of y-CVP in
specially crafted lattices.



Finding short vectors in non-principal ideals

We use approach of and adapted from cyclotomics:
1. Compute DLOG for a target ideal:

d
@=1-] [of
=1

We have a € K, but

* « is not short
ca€elonlyifalle; >0

2. Reduce element «:

* Modulo units } Applying y-CVP solvers
* Modulo S-units with a drift



Reduction modulo units

Assumption 1

Let K = Q(\/d_, ...,w/dn), deg K = m, and log D = log(d; - ...- d,) = (log m)°.
» There is an algorithm ShortGenerator that given a principal ideal I = (h) returns an
~ 1
element g € I such that (k) = (g) and |lg|| = e? YN (h)m.
» The algorithm takes quasi-polynomial time in m and log N(h).

« The element g is a solution of y-SVP in the lattice a(I) with y = eV,

» We use here a quasi-polynomial algorithm of [BEVL\V17].

» Forideals that can be used in crypto, i.e. with short generators, this is theorem.



Reduction modulo S-units

d

€i

(a) =1- Hpi
=1

* B € K is S-unitif () = [T, p"
Our goal: find an S-unit 8 s.t. |le — f|| issmalland ¢; — f; = 0.

So, we can replace a with short element% €l

This is solving of y-CVP in Log-S-unit lattice.
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Log-S-unit lattice

Asg = Logs(?és
¢ LOgS:IB = (fl""lfd)

* Ok s is the ring of all S-units

To solve y-CVP efficiently we have to build a short basis for Ag
 y determined by the size of this basis

This can be done in class group computation with
algorithm.
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Short basis for Log-S-unit lattice

Assumption 2

LetK = Q({/dy, ..., /dy ), deg K =m,D = dj - ... dy, and S be
a set of prime ideals generating Cly.

Then the generators of the lattice Logs0x s obtained by lifting
from quadratic subfields of K have length 0(,/m log D).

» when log D = (logm)?™ building such a basis take quasi-polynomial time
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Class group computations

Table 1. Euclidean lengths for class group relations

Field m rank Ag b, bo by<vm by <2ym  p, < ./mlog,m
imag. 32 128 4 1 v v v
imag. 64 912 7/ 2 v v v
imag. 128 1024 12.80 2 X v v
imag. 256 2944 23.28 2 X v v
real 32 112 3.16 1 v v v
real 64 448 5.29 1 v v v
real 128 1344 9.53 2 v v v
real 256 1664 15.03 2 v v v

* b, and b, - lengths of longest vector in the generators with resp. to ¢, and ¢, norms

» datais given for fields where d;, ..., d,, are the first primes s.t. d; = 1 mod 4



Algorithm for solving y-SVP in multiquadratics

Adaptation of [CD\W17/] and [BLNR27]| to multiquadratics:

Algorithm 1

1. Solve DLOG in Clk for the target ideal I: edrift = b, - 1is added to

find « and e s.t. (@) = I'T]; p;*
) = 1 Lwy ensure that f; > 0.
2. Build a short basis for the Log-S-unit lattice Ag

Reduce e in Ag using the found short basis:
f =e— (y-CVP(Ag, e + drift) = h- B(Ag))

a—a/]_[ﬂ’”

4. Reduce « in the Log-unit lattice:
return ShortGenerator(a)
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Complexity and approximation factor
L Manet

Let K = (Qg(\/d_1 ...,,/dn), degK =m,and D = d, - ...- d,, be quasi-polynomial in m.
Then

» Algorithm 1 is correct and takes quasi-polynomial time under Assumptions 1,2.

5 1
* It returns an element a of norm ||a||, < e0(Vm) N(I)m.

» The algorithm solves y-SVP in a(I) withy = eO(Vm),

» all steps of Algorithm 1 are quasi-polynomial
» bound for length follows from the assumptions
to be compared with: BKZ that takes subexponential time for the same y
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Experiments

Table 2. Approximation factors reached by Algorithm 1

Field m Inygn J2mlogmlogD
imag. 8 1.00 13.45
imag. 16 3.09 27.27
imag. 32 11.30 90.55
imag. 64 49.59 89.22

real 8 1.45 15.26

real 16 4.27 30.33

real 32 18.07 55.69

real 64 64.55 97.06

* Implementation is made in
SageMath v.10.2

e Computations were done on
Intel Xeon Silver 4201R
clocked at 2.40GHz on the

machine with 629 GB RAM and

took less than a week.

* The values of Iny,, are
average for 10 random ideals
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Source code: https://qgithub.com/novoselov-sa/mgASVP
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