On Approx-SVP in multiquadratic ideal lattices

Semyon Novoselov

Immanuel Kant Baltic Federal University

IndoCrypt 2024

Content

- I. Introduction
- II. Finding short vectors in non-principal ideal lattices
- III. Implementation and experiments

Definitions

Multiquadratic field:

$$
K = \mathbb{Q}(\sqrt{d_1}, \dots, \sqrt{d_n})
$$

Class group Cl_K :

- quotient of fractional ideals modulo principal ideals
- $S = \{p_1, ..., p_d\}$ is a set of prime ideals that generates Cl_K

Discrete logarithm problem (DLP) in Cl_K :

Given an ideal *I*, find $\alpha \in K$ and integers $\ell_1, ..., \ell_d$ s.t.

$$
I = \alpha \cdot p_1^{\ell_1} \cdot \ldots \cdot p_d^{\ell_d}
$$

Ideals and lattices

Let $m = 2^n = \deg K$ and $\sigma_1, ..., \sigma_m$ be $r_1 + 2r_2$ complex embeddings of K .

Lattice in \mathbb{R}^m : $\Lambda = \mathbb{Z} b_1 \oplus ... \oplus \mathbb{Z} b_r$ for linear independent vectors $b_1, ..., b_r \in \mathbb{R}^m$.

Canonical embedding:

 $\sigma: K \to \mathbb{R}^m, \alpha \mapsto (|\sigma_1(\alpha)|, ..., |\sigma_m(\alpha)|)$

An ideal I is a lattice under the canonical embedding: $\sigma(I)$.

Shortest vector problem (SVP)

 γ -SVP: find a vector $\mathbf{v} \in \Lambda$ s.t. $\|\mathbf{v}\| = \gamma \cdot \lambda_1(\Lambda)$

- $\lambda_1(\Lambda)$: (Euclidean) norm of the shortest non-zero vector in Λ
- γ : approximation factor

Hard problem in general: subexponential γ in subexponential time (BKZ)

[CDW17]+ cyclotomics: subexponential γ in polynomial time [BBVLV17] multiquadratics: short generators in principal ideals (SPIP) in quasi-polynomial time, $y = ?$

Our work: finding "mildly" short elements in non-principal ideals of multiquadratic field in quasi-polynomial time.

Ideal lattices: bounds for shortest vector

$$
\sqrt{m} \cdot N(I)^{\frac{1}{m}} \le \lambda_1(I) \le \sqrt{m} \cdot \sqrt{|\Delta_K|^{m}} N(I)^{\frac{1}{m}} \left(\frac{2}{\pi}\right)^{\frac{r_2}{m}}
$$

Lower bound is a special property of ideal lattices:

- $\lambda_1(I)$ is known up to factor $D_K = \sqrt{|\Delta_K|}^m$ 1
- $D_K \approx m$ for cyclotomics
- $D_K \approx$ quasipoly(*m*) for multiquadratics (assuming $D = d_1 \cdot ... \cdot d_n = \text{quasipoly}(m)$)

Closest vector problem (CVP)

 γ -CVP: Given a vector $\mathbf{t} \in \mathbb{R}^m$ find $\mathbf{x} \in \Lambda$ s.t. $||\mathbf{x} - \mathbf{t}|| \le \gamma ||\mathbf{y} - \mathbf{t}||$ for all $\mathbf{y} \in \Lambda$.

- hard problem in general
- easy case 1: known short basis
- easy case 2: known orthogonal basis

We solve γ -SVP in ideal lattices using reduction to easy cases of γ -CVP in specially crafted lattices.

Finding short vectors in non-principal ideals

We use approach of [CDW17] and [BLNR22] adapted from cyclotomics:

1. Compute DLOG for a target ideal:

$$
\langle \alpha \rangle = I \cdot \prod_{i=1}^{d} \mathfrak{p}_{i}^{e_{i}}
$$

We have $\alpha \in K$, but

- α is not short
- $\alpha \in I$ only if all $e_i \geq 0$
- 2. Reduce element α :
	- Modulo units
	- \bullet Modulo S-units with a drift

Applying ν -CVP solvers

Reduction modulo units

Assumption 1

Let
$$
K = \mathbb{Q}(\sqrt{d_1}, \dots, \sqrt{d_n})
$$
, $\deg K = m$, and $\log D = \log(d_1 \cdot \dots \cdot d_n) = (\log m)^{O(1)}$.

- There is an algorithm ShortGenerator that given a principal ideal $I = \langle h \rangle$ returns an element $g\in I$ such that $\langle h\rangle=\langle g\rangle$ and $\|g\|=e^{\tilde{ \mathcal{O}}(\sqrt{m})}N(h)^{\frac{1}{m}}$ \overline{m} .
- The algorithm takes quasi-polynomial time in m and $\log N(h)$.
- The element g is a solution of y-SVP in the lattice $\sigma(I)$ with $\gamma = e^{\tilde{\sigma}(\sqrt{m})}$.

- We use here a quasi-polynomial algorithm of [BBVLV17].
- For ideals that can be used in crypto, i.e. with short generators, this is theorem.

Reduction modulo S-units

$$
\langle \alpha \rangle = I \cdot \prod_{i=1}^{d} \mathfrak{p}_{i}^{e_{i}}
$$

• $\beta \in K$ is S-unit if $\langle \beta \rangle = \prod_{i=1}^d \mathfrak{p}_i^j$ $f_{\it i}$

Our goal: find an S-unit β s.t. $||e - f||$ is small and $e_i - f_i \ge 0$.

So, we can replace α with short element $\frac{\alpha}{\rho}$ β $\in I$.

This is solving of γ -CVP in Log-S-unit lattice.

Log-S-unit lattice

$$
\Lambda_S = \text{Log}_S \mathcal{O}_{K,S}^{\times}
$$

- Log_s: $\beta \mapsto (f_1, ..., f_d)$
- $\mathcal{O}_{K,S}^{\times}$ is the ring of all S-units

To solve γ -CVP efficiently we have to build a **short basis** for Λ_s

• γ determined by the size of this basis

This can be done in class group computation with Biasse-van Vredendaal algorithm.

Short basis for Log-S-unit lattice

Let $K=\mathbb{Q}(\sqrt{d_1},\ldots,\sqrt{d_n})$, deg $K=m$, $D=d_1\cdot\ldots\cdot d_n$, and S be a set of prime ideals generating Cl_K . Then the generators of the lattice $\text{Log}_S \mathcal{O}_{K,S}^{\times}$ obtained by lifting from quadratic subfields of K have length $\mathcal{O}(\sqrt{m \log D})$. Assumption 2

• when $\log D = (\log m)^{O(1)}$ building such a basis take quasi-polynomial time

Class group computations

• b_2 and b_{∞} - lengths of longest vector in the generators with resp. to ℓ_2 and ℓ_{∞} norms

• data is given for fields where $d_1, ..., d_n$ are the first primes s.t. $d_i \equiv 1 \mod 4$

Algorithm for solving γ -SVP in multiquadratics

Adaptation of [CDW17] and [BLNR21] to multiquadratics:

Algorithm 1

- 1. Solve DLOG in $\text{Cl}_{\mathbf{K}}$ for the target ideal *I*: find α and e s.t. $\langle \alpha \rangle = I \prod_i \mathfrak{p}_i^{e_i}$
- 2. Build a short basis for the Log-S-unit lattice $\Lambda_{\rm S}$
- 3. Reduce **e** in Λ_s using the found short basis: $f = e - (\gamma$ -CVP(Λ_S , $e + drift$) = $h \cdot B(\Lambda_S)$) $\alpha = \alpha / \left| \begin{array}{c} \beta_j \end{array} \right|$ j h_j
- 4. Reduce α in the Log-unit lattice: return ShortGenerator(α)

• $drift = b_2 \cdot \mathbf{1}$ is added to ensure that $f_i > 0$.

Complexity and approximation factor

Let $K = \mathbb{Q}(\sqrt{d_1}, \ldots, \sqrt{d_n})$, deg $K = m$, and $D = d_1 \cdot \ldots \cdot d_n$ be quasi-polynomial in m. Then • Algorithm 1 is correct and takes quasi-polynomial time under Assumptions 1,2. • It returns an element α of norm $\|\alpha\|_2 \leq \, e^{\tilde{\mathcal{O}}\left(\sqrt{m}\right)} \, N(I)^{\frac{1}{m}}$ \overline{m} . Main result

• The algorithm solves γ -SVP in $\sigma(I)$ with $\gamma = e^{\tilde{\sigma}(\sqrt{m})}$.

- all steps of Algorithm 1 are quasi-polynomial
- bound for length follows from the assumptions

to be compared with: BKZ that takes subexponential time for the same γ

Experiments

- Implementation is made in SageMath v.10.2
- Computations were done on Intel Xeon Silver 4201R clocked at 2.40GHz on the machine with 629 GB RAM and took less than a week.
- The values of $\ln \gamma_{gh}$ are average for 10 random ideals

Source code: <https://github.com/novoselov-sa/mqASVP>