On Approx-SVP in multiquadratic ideal lattices

Semyon Novoselov

Immanuel Kant Baltic Federal University

IndoCrypt 2024

Content

- I. Introduction
- II. Finding short vectors in non-principal ideal lattices
- III. Implementation and experiments

Definitions

Multiquadratic field:

$$K = \mathbb{Q}\left(\sqrt{d_1}, \dots, \sqrt{d_n}\right)$$

Class group Cl_K:

- quotient of fractional ideals modulo principal ideals
- $S = \{p_1, \dots, p_d\}$ is a set of prime ideals that generates Cl_K

Discrete logarithm problem (DLP) in Cl_K:

Given an ideal *I*, find $\alpha \in K$ and integers ℓ_1, \ldots, ℓ_d s.t.

$$\mathbf{I} = \alpha \cdot \mathfrak{p}_1^{\ell_1} \cdot \ldots \cdot \mathfrak{p}_d^{\ell_d}$$

Ideals and lattices

Let $m = 2^n = \deg K$ and $\sigma_1, \dots, \sigma_m$ be $r_1 + 2r_2$ complex embeddings of K.

Lattice in \mathbb{R}^m :

 $\Lambda = \mathbb{Z} \ b_1 \oplus \ ... \oplus \mathbb{Z} \ b_r$

for linear independent vectors $b_1, ..., b_r \in \mathbb{R}^m$.

Canonical embedding:

 $\sigma: \mathbb{K} \to \mathbb{R}^{\mathrm{m}}, \alpha \mapsto (|\sigma_1(\alpha)|, \dots, |\sigma_{\mathrm{m}}(\alpha)|)$

An ideal I is a lattice under the canonical embedding: $\sigma(I)$.

Shortest vector problem (SVP)

 γ -SVP: find a vector $\mathbf{v} \in \Lambda$ s.t. $\|\mathbf{v}\| = \gamma \cdot \lambda_1(\Lambda)$

- $\lambda_1(\Lambda)$: (Euclidean) norm of the shortest non-zero vector in Λ
- γ: approximation factor

Hard problem in general: subexponential γ in subexponential time (BKZ)

[CDW17]+ cyclotomics: subexponential γ in polynomial time [BBVLV17] multiquadratics: short generators in principal ideals (SPIP) in quasi-polynomial time, $\gamma = ?$

Our work: finding "mildly" short elements in **non-principal** ideals of multiquadratic field in **quasi-polynomial** time.

Ideal lattices: bounds for shortest vector

$$\sqrt{m} \cdot N(I)^{\frac{1}{m}} \le \lambda_1(I) \le \sqrt{m} \cdot \sqrt{|\Delta_K|^{\frac{1}{m}}} N(I)^{\frac{1}{m}} \left(\frac{2}{\pi}\right)^{\frac{r_2}{m}}$$

Lower bound is a special property of ideal lattices:

- $\lambda_1(I)$ is known up to factor $D_K = \sqrt{|\Delta_K|}^{\frac{1}{m}}$
- $D_K \approx m$ for cyclotomics
- $D_K \approx \text{quasipoly}(m)$ for multiquadratics (assuming $D = d_1 \cdot \dots \cdot d_n = \text{quasipoly}(m)$)

Closest vector problem (CVP)

\gamma-CVP: Given a vector $\mathbf{t} \in \mathbb{R}^m$ find $\mathbf{x} \in \Lambda$ s.t. $\|\mathbf{x} - \mathbf{t}\| \le \gamma \|\mathbf{y} - \mathbf{t}\|$ for all $\mathbf{y} \in \Lambda$.

- hard problem in general
- easy case 1: known short basis
- easy case 2: known orthogonal basis

We solve γ -SVP in ideal lattices using reduction to easy cases of γ -CVP in specially crafted lattices.

Finding short vectors in non-principal ideals

We use approach of [CDW17] and [BLNR22] adapted from cyclotomics:

1. Compute DLOG for a target ideal:

$$\langle \alpha \rangle = I \cdot \prod_{i=1}^{d} \mathfrak{p}_{i}^{e_{i}}$$

We have $\alpha \in K$, but

- *α* is not short
- $\alpha \in I$ only if all $e_i \ge 0$
- **2**. Reduce element α :
 - Modulo units
 - Modulo S-units with a drift

Applying γ -CVP solvers

Reduction modulo units

Assumption 1

Let
$$K = \mathbb{Q}(\sqrt{d_1}, \dots, \sqrt{d_n})$$
, deg $K = m$, and log $D = \log(d_1 \cdot \dots \cdot d_n) = (\log m)^{\mathcal{O}(1)}$.

- There is an algorithm ShortGenerator that given a principal ideal $I = \langle h \rangle$ returns an element $g \in I$ such that $\langle h \rangle = \langle g \rangle$ and $||g|| = e^{\tilde{\mathcal{O}}(\sqrt{m})}N(h)^{\frac{1}{m}}$.
- The algorithm takes quasi-polynomial time in m and $\log N(h)$.
- The element g is a solution of γ -SVP in the lattice $\sigma(I)$ with $\gamma = e^{\tilde{\mathcal{O}}(\sqrt{m})}$.

- We use here a quasi-polynomial algorithm of [BBVLV17].
- For ideals that can be used in crypto, i.e. with short generators, this is theorem.

Reduction modulo S-units

$$\langle \alpha \rangle = I \cdot \prod_{i=1}^{d} \mathfrak{p}_i^{e_i}$$

• $\beta \in K$ is *S*-unit if $\langle \beta \rangle = \prod_{i=1}^{d} \mathfrak{p}_{i}^{f_{i}}$

Our goal: find an *S*-unit β s.t. $\|\boldsymbol{e} - \boldsymbol{f}\|$ is small and $e_i - f_i \ge 0$.

So, we can replace α with short element $\frac{\alpha}{\beta} \in I$.

This is solving of γ -CVP in Log-S-unit lattice.

Log-S-unit lattice

 $\Lambda_S = \mathrm{Log}_S \mathcal{O}_{K,S}^{\times}$

- $\text{Log}_S: \beta \mapsto (f_1, \dots, f_d)$
- $\mathcal{O}_{K,S}^{\times}$ is the ring of all *S*-units

To solve γ -CVP efficiently we have to build a short basis for Λ_S

• γ determined by the size of this basis

This can be done in **class group computation** with Biasse-van Vredendaal algorithm.

Short basis for Log-S-unit lattice

• when $\log D = (\log m)^{O(1)}$ building such a basis take quasi-polynomial time

Class group computations

Table 1. Euclidean lengths for class group relations								
Field	m	$\operatorname{rank} \Lambda_S$	<i>b</i> ₂	b_∞	$b_2 \leq \sqrt{m}$	$b_2 \le 2\sqrt{m}$	$b_2 \leq \sqrt{m \log_2 m}$	
imag.	32	128	4	1	\checkmark	\checkmark	\checkmark	
imag.	64	512	7	2	\checkmark	\checkmark	\checkmark	
imag.	128	1024	12.80	2	X	\checkmark	\checkmark	
imag.	256	2944	23.28	2	X	\checkmark	\checkmark	
real	32	112	3.16	1	\checkmark	\checkmark	\checkmark	
real	64	448	5.29	1	\checkmark	\checkmark	\checkmark	
real	128	1344	9.53	2	\checkmark	\checkmark	\checkmark	
real	256	1664	15.03	2	\checkmark	\checkmark	\checkmark	

• b_2 and b_{∞} - lengths of longest vector in the generators with resp. to ℓ_2 and ℓ_{∞} norms

• data is given for fields where d_1, \dots, d_n are the first primes s.t. $d_i \equiv 1 \mod 4$

Algorithm for solving γ -SVP in multiquadratics

Adaptation of [CDW17] and [BLNR21] to multiquadratics:

Algorithm 1

- 1. Solve DLOG in Cl_K for the target ideal *I*: find α and **e** s.t. $\langle \alpha \rangle = I \prod_i \mathfrak{p}_i^{e_i}$
- 2. Build a short basis for the Log-S-unit lattice Λ_S
- 3. Reduce \mathbf{e} in Λ_S using the found short basis: $\mathbf{f} = \mathbf{e} - (\gamma \text{-} \text{CVP}(\Lambda_S, \mathbf{e} + drift) = \mathbf{h} \cdot \text{B}(\Lambda_S))$ $\alpha = \alpha / \prod_j \beta_j^{h_j}$
- 4. Reduce α in the Log-unit lattice: return ShortGenerator(α)

• $drift = b_2 \cdot \mathbf{1}$ is added to ensure that $f_i > 0$.

Complexity and approximation factor

Main resultLet $K = \mathbb{Q}(\sqrt{d_1}, ..., \sqrt{d_n})$, deg K = m, and $D = d_1 \cdot ... \cdot d_n$ be quasi-polynomial in m.ThenAlgorithm 1 is correct and takes quasi-polynomial time under Assumptions 1,2.It returns an element α of norm $\|\alpha\|_2 \leq e^{\tilde{\mathcal{O}}(\sqrt{m})} N(I)^{\frac{1}{m}}$.

• The algorithm solves γ -SVP in $\sigma(I)$ with $\gamma = e^{\tilde{O}(\sqrt{m})}$.

- all steps of Algorithm 1 are quasi-polynomial
- bound for length follows from the assumptions

to be compared with: BKZ that takes subexponential time for the same γ

Experiments

Table 2. Approximation fac	tors reached by Algorithm 1
----------------------------	-----------------------------

Field	m	$\ln \gamma_{gh}$	$\sqrt{2 m \log m \log D}$
imag.	8	1.00	13.45
imag.	16	3.09	27.27
imag.	32	11.30	50.55
imag.	64	49.59	89.22
real	8	1.45	15.26
real	16	4.27	30.33
real	32	18.07	55.69
real	64	64.55	97.06

- Implementation is made in SageMath v.10.2
- Computations were done on Intel Xeon Silver 4201R clocked at 2.40GHz on the machine with 629 GB RAM and took less than a week.
- The values of $\ln \gamma_{gh}$ are average for 10 random ideals

Source code: https://github.com/novoselov-sa/mqASVP