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Definitions

Multiquadratic field:

𝐾 = ℚ 𝑑1, … , 𝑑𝑛

Class group 𝐂𝐥𝐊:

• quotient of fractional ideals modulo principal ideals

• 𝑆 = {𝔭1, … , 𝔭𝑑} is a set of prime ideals that generates Cl𝐾

Discrete logarithm problem (DLP) in 𝐂𝐥𝐊:

Given an ideal 𝐼, find 𝛼 ∈ 𝐾 and integers ℓ1, … , ℓ𝑑 s.t.

I = 𝛼 ⋅ 𝔭1
ℓ1 ⋅ … ⋅ 𝔭𝑑

ℓ𝑑
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Ideals and lattices

Let 𝑚 = 2𝑛 = deg 𝐾 and 𝜎1, … , 𝜎𝑚 be 𝑟1 + 2 𝑟2 complex 

embeddings of 𝐾.

Lattice in ℝ𝑚:
Λ = ℤ 𝑏1 ⊕ …⊕ℤ 𝑏𝑟

for linear independent vectors 𝑏1, … , 𝑏𝑟 ∈ ℝ𝑚.

Canonical embedding:

𝜎: K → ℝm, 𝛼 ↦ (|𝜎1(𝛼)|, … , |𝜎m 𝛼 |)

An ideal I is a lattice under the canonical embedding: 𝜎(𝐼).
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Shortest vector problem (SVP)

𝛾-SVP: find a vector 𝐯 ∈ Λ s.t. 𝐯 = 𝛾 ⋅ 𝜆1(Λ)

• 𝜆1(Λ): (Euclidean) norm of the shortest non-zero vector in Λ

• 𝛾: approximation factor

Hard problem in general: subexponential 𝛾 in subexponential time 
(BKZ)

[CDW17]+ cyclotomics: subexponential 𝛾 in polynomial time

[BBVLV17] multiquadratics: short generators in principal ideals 
(SPIP) in quasi-polynomial time, 𝛾 = ?

Our work: finding “mildly” short elements in non-principal ideals of 
multiquadratic field in quasi-polynomial time.
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Ideal lattices: bounds for shortest vector

𝑚 ⋅ 𝑁 𝐼
1
𝑚 ≤ 𝜆1 𝐼 ≤ 𝑚 ⋅ Δ𝐾

1
𝑚 𝑁 𝐼

1
𝑚

2

𝜋

𝑟2
𝑚

Lower bound is a special property of ideal lattices:

•𝜆1(𝐼) is known up to factor 𝐷𝐾 = Δ𝐾

1

𝑚

•𝐷𝐾 ≈ 𝑚 for cyclotomics

•𝐷𝐾 ≈ quasipoly(𝑚) for multiquadratics
(assuming 𝐷 = 𝑑1 ⋅ … ⋅ 𝑑𝑛 = quasipoly(𝑚))
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Closest vector problem (CVP)

𝜸-CVP: Given a vector 𝐭 ∈ ℝ𝑚 find 𝐱 ∈ Λ s.t.
𝐱 − 𝐭 ≤ 𝛾 𝐲 − 𝐭 for all 𝐲 ∈ Λ.

•hard problem in general

•easy case 1: known short basis

•easy case 2: known orthogonal basis

We solve 𝛾-SVP in ideal lattices using 
reduction to easy cases of 𝛾-CVP in 
specially crafted lattices.
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Finding short vectors in non-principal ideals

We use approach of [CDW17] and [BLNR22] adapted from cyclotomics:

1. Compute DLOG for a target ideal:

𝛼 = 𝐼 ⋅ෑ

𝑖=1

𝑑

𝔭𝑖
𝑒𝑖

We have 𝛼 ∈ 𝐾, but
• 𝛼 is not short

• 𝛼 ∈ 𝐼 only if all 𝑒𝑖 ≥ 0

2. Reduce element 𝛼:

• Modulo units

• Modulo 𝑆-units with a drift
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Applying 𝛾-CVP solvers



Reduction modulo units
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Let 𝐾 = ℚ 𝑑1, … , 𝑑𝑛 , deg𝐾 = 𝑚, and log 𝐷 = log(𝑑1 ⋅ … ⋅ 𝑑𝑛) = log 𝑚 𝒪(1).

• There is an algorithm ShortGenerator that given a principal ideal 𝐼 = ℎ returns an 

element 𝑔 ∈ 𝐼 such that ℎ = 𝑔 and 𝑔 = 𝑒
෨𝒪( 𝑚)𝑁 ℎ

1

𝑚.

• The algorithm takes quasi-polynomial time in 𝑚 and log𝑁(ℎ).

• The element 𝑔 is a solution of 𝛾-SVP in the lattice 𝜎(𝐼) with 𝛾 = 𝑒
෨𝒪( 𝑚).

Assumption 1

• We use here a quasi-polynomial algorithm of [BBVLV17].

• For ideals that can be used in crypto, i.e. with short generators, this is theorem.



Reduction modulo S-units

𝛼 = 𝐼 ⋅ෑ

𝑖=1

𝑑

𝔭𝑖
𝑒𝑖

• 𝛽 ∈ 𝐾 is 𝑺-unit if 𝛽 = ς𝑖=1
𝑑 𝔭𝑖

𝑓𝑖

Our goal: find an 𝑆-unit 𝛽 s.t. 𝒆 − 𝒇 is small and 𝑒𝑖 − 𝑓𝑖 ≥ 0.

So, we can replace 𝛼 with short element 
𝛼

𝛽
∈ 𝐼.

This is solving of 𝛾-CVP in Log-𝑆-unit lattice.
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Log-S-unit lattice

Λ𝑆 = Log𝑆𝒪𝐾,𝑆
×

• Log𝑆: 𝛽 ↦ (𝑓1, … , 𝑓𝑑)

• 𝒪𝐾,𝑆
× is the ring of all 𝑆-units

To solve 𝛾-CVP efficiently we have to build a short basis for Λ𝑆

• 𝛾 determined by the size of this basis

This can be done in class group computation with Biasse-van Vredendaal
algorithm.
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Short basis for Log-S-unit lattice
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• when log 𝐷 = (log𝑚)𝒪(1) building such a basis take quasi-polynomial time

Let 𝐾 = ℚ 𝑑1, … , 𝑑𝑛 , deg 𝐾 = 𝑚, 𝐷 = 𝑑1 ⋅ … ⋅ 𝑑𝑛, and 𝑆 be 

a set of prime ideals generating Cl𝐾.

Then the generators of the lattice Log𝑆𝒪𝐾,𝑆
× obtained by lifting 

from quadratic subfields of 𝐾 have length 𝒪( m log D).

Assumption 2



Class group computations

Field m rank ΛS 𝑏2 𝑏∞ 𝑏2 ≤ 𝑚 𝑏2 ≤ 2 𝑚 𝑏2 ≤ 𝑚 log2𝑚

imag. 32 128 4 1 ✓ ✓ ✓

imag. 64 512 7 2 ✓ ✓ ✓

imag. 128 1024 12.80 2 x ✓ ✓

imag. 256 2944 23.28 2 x ✓ ✓

real 32 112 3.16 1 ✓ ✓ ✓

real 64 448 5.29 1 ✓ ✓ ✓

real 128 1344 9.53 2 ✓ ✓ ✓

real 256 1664 15.03 2 ✓ ✓ ✓
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Table 1. Euclidean lengths for class group relations

• 𝑏2 and 𝑏∞ - lengths of longest vector in the generators with resp. to ℓ2 and ℓ∞ norms 

• data is given for fields where 𝑑1, … , 𝑑𝑛 are the first primes s.t. 𝑑𝑖 ≡ 1 𝑚𝑜𝑑 4



Algorithm for solving 𝛾-SVP in multiquadratics

Adaptation of [CDW17] and [BLNR21] to multiquadratics:
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1. Solve DLOG in ClK for the target ideal 𝐼:

find 𝛼 and 𝐞 s.t. 𝛼 = 𝐼ς𝑖 𝔭𝑖
𝑒𝑖

2. Build a short basis for the Log-𝑆-unit lattice ΛS

3. Reduce 𝐞 in Λ𝑆 using the found short basis:
𝐟 = 𝐞 − (𝛾-CVP Λ𝑆, 𝒆 + 𝑑𝑟𝑖𝑓𝑡 = 𝒉 ⋅ B Λ𝑆 )

𝛼 = 𝛼 /ෑ

𝑗

𝛽
𝑗

ℎ𝑗

4. Reduce 𝛼 in the Log-unit lattice:
return ShortGenerator(𝛼)

Algorithm 1

•𝑑𝑟𝑖𝑓𝑡 = 𝑏2 ⋅ 𝟏 is added to 

ensure that 𝑓𝑖 > 0.



Complexity and approximation factor

• all steps of Algorithm 1 are quasi-polynomial

• bound for length follows from the assumptions

to be compared with: BKZ that takes subexponential time for the same 𝛾
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Let 𝐾 = ℚ 𝑑1, … , 𝑑𝑛 , deg 𝐾 = 𝑚, and 𝐷 = 𝑑1 ⋅ … ⋅ 𝑑𝑛 be quasi-polynomial in 𝑚.

Then

• Algorithm 1 is correct and takes quasi-polynomial time under Assumptions 1,2. 

• It returns an element 𝛼 of norm 𝛼 2 ≤ 𝑒
෨𝒪 𝑚 𝑁 𝐼

1

𝑚.

• The algorithm solves 𝛾-SVP in 𝜎(𝐼) with 𝛾 = 𝑒
෨𝒪 𝑚 .

Main result



Experiments
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Field m ln 𝛾𝑔ℎ 2 𝑚 log𝑚 log𝐷

imag. 8 1.00 13.45

imag. 16 3.09 27.27

imag. 32 11.30 50.55

imag. 64 49.59 89.22

real 8 1.45 15.26

real 16 4.27 30.33

real 32 18.07 55.69

real 64 64.55 97.06

Table 2. Approximation factors reached by Algorithm 1 • Implementation is made in 

SageMath v.10.2

• Computations were done on 

Intel Xeon Silver 4201R 

clocked at 2.40GHz on the 

machine with 629 GB RAM and 

took less than a week.

• The values of ln 𝛾𝑔ℎ are 

average for 10 random ideals



Source code: https://github.com/novoselov-sa/mqASVP
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