Эллиптические кривые

Лекция 7. Алгоритм факторизации на эллиптических кривых

Семён Новосёлов

БФУ им. И. Канта

2025

Факторизация

По заданному большому числу N найти его множители.

- Безопасность криптосистемы RSA строится на сложности факторизации числа $N=p\cdot q$.
- Факторизация чисел требуется и в других приложениях: например, при нахождении порядка элемента группы.

Алгоритм ЕСМ¹

- предложен Ленстрой в 1987 г.
- наиболее эффективен для нахождения малых множителей числа N
- используется для отсечения малых делителей перед запуском более эффективных для больших чисел алгоритмов факторизации (решето числового поля)

¹Elliptic curve factorization method

Факторизация в Sage и Pari/GP

По-умолчанию Sage вызывает методы из Pari/GP.

Факторизация выполняется в несколько этапов:

- (поиск малых делителей) запускаются по очереди:
 - ρ-метод Полларда
 - метод квадратичных форм Шенкса
 - алгоритм ЕСМ
- 2 (поиск больших делителей)
 - метод квадратичного решета (MPQS)

Замечание: самый лучший алгоритм факторизации – NFS не реализован, но он работает быстрее только для больших чисел $> 2^{300}$. Для таких чисел лучше использовать спец. пакеты – CADO-NFS и др.

(p-1)-метод Полларда

Алгоритм ЕСМ – обобщение метода (p-1)-метода факторизации Полларда 2 .

Малая теорема Ферма

$$\mathfrak{p}$$
 – простое, $\mathfrak{a} \in \mathbb{Z}$ и $\mathfrak{p} \nmid \mathfrak{a} \implies \mathfrak{a}^{\mathfrak{p}-1} \equiv 1 \pmod{\mathfrak{p}}$.

 $^{^2}$ не путать с ρ -методом Полларда

Пусть N = pq, где p, q — простые и

- p-1 факторизуется на малые простые
- q-1 не факторизуется на малые простые

Точнее:

$$\mathfrak{p}-1=\prod \mathfrak{p}_i^{\mathfrak{e}_i},\ \mathfrak{p}_i\leq B_1, \mathfrak{p}_i^{\mathfrak{e}_i}\leq B_2$$
, т. е. $\mathfrak{p}-1$ явл-ся B_1 -гладким.

Число – B-гладкое, если все его простые множители $\leq B$.

Идея метода:

• (из теор. Ферма): $\forall \alpha \in \mathbb{Z}_N^{\times}$ и $\forall k = l(p-1)$:

$$a^k = (a^l)^{p-1} \equiv 1 \mod p$$

• $a^k \not\equiv 1 \mod q \implies \gcd(N, a^k - 1) = p$

Алгоритм

Вход: $N = p \cdot q$ и границы B_1, B_2 . **Выход:** $p, q = \frac{N}{p}$, или «делители не найдены».

- $\mathbf{0} \ \mathbf{a} \leftarrow \mathbb{Z}_N^{\times}$
- ② for всех простых $p_i\leqslant B_1$: $a\leftarrow a^{p_i^{e_i}} \mod N$, где e_i макс.: $p_i^{e_i}\leqslant B_2$.
- 3 if $gcd(a-1,N) \notin \{1,N\}$ return $gcd(a-1,N), \frac{N}{gcd(a-1,N)}$.

else:

return «делители не найдены».

Корректность

Лемма

Пусть $N=p\cdot q$, $B_1,B_2\in\mathbb{N}$, т.ч. (p-1) — B_i -гладкое и $p-1=\prod p_i^{e_i}$, $p_i^{e_i}\leqslant B_2$. А (q-1) — не B_i -гладкое. Тогда алгоритм (p-1) Полларда находит p за время $O(B_1\lg^3N)$ с вероятностью $1-\frac{1}{B_1}$.

$$riangleleft$$
 Положим $k = \prod_{\mathfrak{p}_{\mathfrak{i}} < B_1} \mathfrak{p}_{\mathfrak{i}}^{\mathfrak{e}_{\mathfrak{i}}}.$

- k кратно $p-1 \implies a^k \equiv 1 \mod p$
- ullet (q-1) не B_1 -гладкое $\Longrightarrow \exists r$ простое, $r>B_1$ т.ч. $r\mid q-1$.

B случае $r \mid \operatorname{ord}_{\mathbb{Z}_a^{\times}}(\mathfrak{a})$:

- имеем $\operatorname{ord}_{\mathbb{Z}_{\mathfrak{a}}^{\times}}(\mathfrak{a}) \nmid k$, поэтому $\mathfrak{a}^k \not\equiv 1 \bmod \mathfrak{q}.$
- ullet $\gcd(\mathfrak{a}^k-1,N)=\mathfrak{p}$, т.к. $\mathfrak{a}^k\equiv 1 mod \mathfrak{p}$ и $\mathfrak{a}^k\not\equiv 1 mod \mathfrak{q}$.

Так как $\operatorname{ord}_{\mathbb{Z}_q^\times}(\mathfrak{a})$ – целое число, то вероятность того, что $\operatorname{ord}_{\mathbb{Z}_q^\times}(\mathfrak{a}) \nmid k$ равна $1-\frac{1}{k}=1-\frac{1}{B_1}$. ight
angle

Сложность

Существует не более B_1 простых p_i , таких что $p_i < B_1$ (точнее: $\exists \sim \frac{B_1}{\lg(B_1)}$ по теореме о распределении простых чисел.)

- Шаг 2: O(lg³ N)
- Шаг 3: O(lg² N)

Итого: $O(B_1 \cdot \lg^3 N)$.

Замечание. Вероятность успеха и сложность алгоритма зависят от $|\mathbb{Z}_n^\times|=p-1$:

• $\frac{p-1}{2}$ – простое \Rightarrow $B_1 \approx p \Rightarrow$ сложность $O(p \cdot \lg^3 N)$ – не лучше простого перебора.

Решение: использовать эллиптические кривые, т.к. $\#E(\mathbb{Z}_p) \in [p+1-2\sqrt{p},\ p+1+2\sqrt{p}]$, и в этом интервале \exists много гладких чисел.

Метод факторизации на эллиптических кривых (ECM)

$$E: y^2 = x^3 + ax + b \mod N$$

- $E(\mathbb{Z}_N) \simeq E(\mathbb{Z}_p) \times E(\mathbb{Z}_q)$.
- Т.к. кольцо \mathbb{Z}_N содержит делители 0, групповой закон корректно определять в проективных координатах.

Идея алгоритма: использовать ошибки «деление на 0» для нахождения множителей N при работе в аффинных координатах.

Нахождение множителя из группового закона

Вход: $P, Q \in E(\mathbb{Z}_N) - \{\mathcal{O}\}$

Выход: либо $P+Q=(x_3,y_3)$, либо $d\mid N.$

- 1) if $x_1 \equiv x_2 \mod N$ и $y_1 = -y_2 \mod N$ return $\mathcal O$
- 2 $d = gcd(x_1 x_2, N)$ if $d \notin \{1, N\}$: return d
- 3 if $x_1 \equiv x_2 \mod N$ $d = \gcd(y_1 + y_2, N)$ if d > 1: return d
- $\alpha = \begin{cases} \frac{y_2 y_1}{x_2 x_1}, & x_1 \neq x_2\\ \frac{3x_1^2 + a}{y_1 + y_2}, & x_1 = x_2. \end{cases}$ $\beta = y_1 \alpha x_1$
- **6** $x_3 = \alpha^2 x_1 x_2 \mod N$ $x_3 = -(\alpha x_3 + \beta) \mod N$ **return** (x_3, y_3)

Алгоритм факторизации ЕСМ

Вход: $N = p \cdot q$, границы B_1, B_2 **Выход:** p, q или «делители не найдены»

- 1 Выбрать $(a,x,y) \leftarrow \mathbb{Z}_N \times \mathbb{Z}_N \times \mathbb{Z}_N$, $b=y^2-x^3-ax \bmod N$
- 2 if $\gcd(4a^3+27b^2,\ N)= \begin{cases} 1, & \text{положим} \quad P=(x,y) \\ N, & \text{идем на шаг 1} \\ \text{иное, вернуть p, q} \end{cases}$
- **3** for всех простых $p_i < B_1$ и $e_i : p_i^{e_i} < B_2$: $P = [p_i^{e_i}]P$ на $E : y^2 = x^3 + \alpha x + b$ при ошибке «деление на 0» вернуть делитель N.
- Перейти к Шагу 1 или вернуть «делитель не найден».

Корректность

Лемма

Пусть $N=p\cdot q$, $E(\mathbb{Z}_N)$ — эллиптическая кривая, т. ч. $|E(\mathbb{F}_p)|$ — B_1 -гладкое и $|E(\mathbb{F}_q)|$ — не B_1 -гладкое. Тогда алгоритм ЕСМ возвращает p,q за время $O(B_1\lg^3N)$ с вероятностью $\geqslant 1-\frac{1}{B_1}$.

ightharpoonup Пусть $k=\prod \mathfrak{p}_{\mathfrak{i}}^{e_{\mathfrak{i}}}.$

 $p_i \leq B_1$ Т. к. $\#E(\mathbb{F}_q)$ — не B_1 -гладкое, то $\exists r > B_1$ т. ч. $r \mid \#E(\mathbb{F}_q)$.

Имеем: $r \mid \operatorname{ord}_{E(\mathbb{F}_q)}(P) \implies [k]P \neq \mathcal{O}$ на $E(\mathbb{F}_q)$. С другой стороны: $\#E(\mathbb{F}_p) \mid k \implies [k]P = \mathcal{O}$ на $E(\mathbb{F}_p)$.

С другои стороны: $\#E(\mathbb{F}_p) \mid k \implies [k]P = \mathcal{O}$ на $E(\mathbb{F}_p)$. Вычисляем [k]P на $E(\mathbb{Z}_N) \implies$ получаем $P' + Q' = \mathcal{O}$ на $E(\mathbb{F}_p)$ и $P' + Q' \neq \mathcal{O}$ на $E(\mathbb{F}_p)$ \implies Алгоритм вернёт (p,q)

 $E(\mathbb{F}_p)$ и $P'+Q'\neq \mathcal{O}$ на $E(\mathbb{F}_q)$ \implies Алгоритм вернёт (p,q). Сложность и вероятность: аналогично (p-1) методу

Сложность и вероятность: аналогично (p-1) методу Полларда. \triangleright

Замечание. Баланс выбора В₁:

- B_1 нужно брать больше, чтобы увеличивать вероятность, что $E(\mathbb{F}_p) B_1$ -гладкое (и можно применять лемму).
- малое $B_1 \Rightarrow$ быстрый алгоритм, малая вероятность успеха
- большое $B_1 \Rightarrow$ медленный алгоритм, большая вероятность успеха.

Оптимально: $B_1 \approx L_p[\frac{1}{2},\ \frac{1}{\sqrt{2}}] = e^{\frac{1}{\sqrt{2}}(\log p)^{\frac{1}{2}}(\log\log p)^{\frac{1}{2}}} \Rightarrow$ время работы алгоритма: $L_p[\frac{1}{2},\ \frac{1}{\sqrt{2}}]$ в предположении о гладкости чисел в интервале $[p+1-2\sqrt{p},\ p+1+2\sqrt{p}].$

 ЕСМ – лучший на сегодня алгоритм для нахождения делителей < 100 бит.

Литература

- I. Blake и др. Elliptic curves in cryptography. 1999.
- H. Cohen и др.
 Handbook of elliptic and hyperelliptic curve cryptography. 2005.
- H. W. Lenstra Jr. Factoring integers with elliptic curves. 1987.
- L. C. Washington. Elliptic curves: number theory and cryptography. 2008.

Контакты

snovoselov@kantiana.ru