Эллиптические кривые

Лекция 8. Тест на простоту на эллиптических кривых

Семён Новосёлов

БФУ им. И. Канта

2025

Мотивация

Тесты на простоту используются в криптографии для:

- генерации простых чисел, как в криптосистеме RSA
- генерации групп для криптосистем на DLOG (необходимы простые группы)

План

- Тест на простоту Миллера-Рабина
- Доказательство простоты с помощью ЭК

Тест на простоту Миллера-Рабина

Малая теорема Ферма

 $\mathfrak{p}\text{ -- простое, }\mathfrak{p}\nmid \mathfrak{a} \implies \mathfrak{a}^{\mathfrak{p}-1}-1 \equiv 0 \pmod{\mathfrak{p}}.$

$$\begin{array}{c} p-1=2^k\cdot q\text{, } q\text{ -- нечётное}\\ & \downarrow \\ a^{p-1}-1=(a^{2^{k-1}\cdot q}-1)\cdot (a^{2^{k-1}\cdot q}+1)=\\ &=(a^q-1)(a^{2^{k-1}\cdot q}+1)\cdot \ldots \cdot (a^{2\cdot q}+1)\cdot (a^q+1) \end{array}$$

• р – простое \implies р делит один из множителей, т.е. выполняется одно из условий:

$$a^{q} \equiv 1, a^{2^{k-1} \cdot q} \equiv -1, \dots, a^{q} \equiv -1$$
 (1)

• р – не простое $\implies \exists a :$ все сравнения (1) не выполняются

Идея: для проверки $\mathfrak n$ на простоту выбираем случайное число $\mathfrak a, \gcd(\mathfrak a, \mathfrak n) = 1$ и проверяем (1) по модулю $\mathfrak n.$

• Число \mathfrak{a} , $\gcd(\mathfrak{a},\mathfrak{n})=\mathfrak{l}$ и проверяем (1) по модулю \mathfrak{n} .

называется **свидетелем**, что n - составное.

Алгоритм Миллера-Рабина

```
Вход: п, а.
Выход: «составное» или «возможно простое»
 1 n-1=2^kq, q- нечётное
 a = a^q \mod n
 3 if a \equiv 1 \mod n:
      return «возможно простое»
 4 for i = 0 ... k - 1
 6 if a \equiv -1 \mod n
        return «возможно простое»
 a = a^2 \mod n
 return «составное»
```

Для проверки на простоту:

- алгоритм выполняется K раз для случайных $a \in [2, n-2]$
- ullet время работы: $O(K \log^3 n)$
- вероятность ошибки: 2^{-2K}

Тест Миллера

Алгоритм можно сделать **детерминированным** (предполагая GRH) перебрав все $a \le 2 \ln^2 n$.

- Сложность: $\widetilde{O}(\log^4 n)$.
- Для маленьких π достаточно перебрать только небольшое кол-во α.
- Например, для $n \le 2^{64}$ достаточно проверить $\alpha = 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31$ и 37.

Тест на простоту на эллиптических кривых

Задача: По данному (большому) числу p определить, является ли p простым числом и, если да, вывести доказательство (**сертификат**) простоты p.

- самый быстрый¹ на сегодняшний день алгоритм предложен Goldwasser-Killan в 1986
- с улучшениями время работы $= poly \log p$, проверка сертификата простоты: $O(\log^4 p)$

¹на практике, сложность в худшем случае не известна

• детерминированные алгоритмы (Cohen-Lenstra'1984) работают за квази-полиномиальное 2 от $\log p$ время $(\log p)^{O(\log \log p)}$ \implies пригодны только для небольших чисел p.

Идея алгоритма Goldwasser-Killan: заменить группу \mathbb{Z}_n^{\times} как в алгоритме Миллера-Рабина или тесте Поклингтона-Леммера на $\mathbb{E}(\mathbb{Z}_n)$.

²если не использовать эвристики, как в детерминированной версии Миллера-Рабина

І. Предварительные сведения

Теорема о распределении порядков случайных ЭК

Пусть
$$p>5$$
 — простое, $S\subseteq [p+1-\lfloor \sqrt{p}\rfloor,p+1+\lfloor \sqrt{p}\rfloor]$ и $A,B\leftarrow \mathbb{F}_p.$ Тогда $\exists~c$ — константа, т.ч.

$$\Pr\left[\#\mathsf{E}_{\mathsf{A},\mathsf{B}}(\mathbb{F}_{\mathfrak{p}})\in\mathsf{S}\right] > \frac{c}{\log \mathfrak{p}} \cdot \frac{|\mathsf{S}|-2}{2\lfloor \sqrt{\mathfrak{p}}\rfloor + 1},$$

где $\#E_{A,B}(\mathbb{F}_p)$ – число точек на $E_{A,B}: y = x^3 + Ax + B$.

Неформальная интерпретация теоремы:

интервала $[p+1-\lfloor\sqrt{p}\rfloor,p+1+\lfloor\sqrt{p}\rfloor]$

• число точек ЕА,В ведёт себя как случайное число из

Лемма

Пусть $n \in \mathbb{Z}, 2,3 \nmid n; p > 3$ – простой делитель n и $4A^3 + 27B^2 \not\equiv 0 \mod \mathfrak{v}$.

- Для любого $x \in \mathbb{Z}/n\mathbb{Z}$ пусть $x_p := x \bmod p$.
- Для любой точки $L = (x, y) \in E_{A,B}(\mathbb{Z}/n\mathbb{Z})$ пусть $L_p = (x_p, y_p) \in E_{A,B}(\mathbb{F}_p).$

Тогда $\forall L, M \in E_{A,B}(\mathbb{Z}/n\mathbb{Z})$, если L+M определено, то $(L+M)_p = L_p + M_p$.

Теорема (Критерий простоты)

Положим:

- $\mathfrak{n} \in \mathbb{Z}$, $A, B \in \mathbb{Z}/\mathfrak{n}\mathbb{Z}$
- $2,3 \nmid n, \gcd(4A^3 + 27B^2, n) = 1$
- $L \in E_{A,B}(\mathbb{Z}/n\mathbb{Z})$, $L \neq \infty$

Тогда:

 \exists простое $q > (n^{1/4} + 1)^2$, т.ч. $qL = \infty \implies n$ – простое.

 \triangleleft От противного: пусть n – составное $\Rightarrow \exists p > 3$, т.ч. $p \mid n, p$

- простое. Т.к. \mathfrak{p} простое, то $\mathfrak{p} < \sqrt{n}$. • Заметим: $gcd(4A^3 + 27B^2, p) \neq 0 \mod p$.
 - Иначе: противоречие с $gcd(4A^3 + 27B^2, n) = 1$.
 - Тогда по Лемме имеем $L_p \in E_{A,B}(\mathbb{F}_p)$ и
 - $q \cdot L_p = (qL)_p = \infty_p = \infty \Rightarrow \operatorname{ord}(L_p) \mid q \Rightarrow \operatorname{ord}(L_p) = q$, T.K. q - простое.

• Имеем:
$$(n^{1/4} + 1)^2 < q = \operatorname{ord}(I_n) < \#F_{A,R}(\mathbb{F}_n) < (\sqrt{p} + 1)^2$$

- $(n^{1/4} + 1)^2 < q = \operatorname{ord}(L_p) \le \# E_{A,B}(\mathbb{F}_p) < (\sqrt{p} + 1)^2.$
- $\Longrightarrow \mathfrak{p} > \sqrt{\mathfrak{n}}$.
- Это противоречие, значит, n − простое.

II. Алгоритм: тест на простоту

Вкратце:

- доказательство простоты p сводим к доказательству простоты $q \leq \frac{p}{2} + o(p)$
- рекурсивно применяем алгоритм для p = q, пока не получим достаточно малое значение q – такое, что детерминированные тесты будут эффективны.

По критерию простоты задача сводится к построению для \mathfrak{p} , кривой $\mathsf{E}_{A,B}$ над $\mathbb{F}_{\mathfrak{p}}$ с точкой L порядка $q \approx \mathfrak{p}/2$.

Алгоритм 1. Gen_curve

```
Вход: р Выход: A, B, q
```

- **1** A, B $\stackrel{\$}{\leftarrow} \mathbb{F}_p$, T.4. $(4A^3 + 27B^2, p) = 1$ и $\#E(\mathbb{F}_p) \equiv 0 \pmod{2}$
- 2 $q = \#E_{A,B}(\mathbb{F}_p)/2$ if $2 \mid q$ или $3 \mid q$ перейти к шагу 1
- ③ Запустить вероятностный алгоритм проверки q на простоту (Миллера—Рабина) на $O(\log p)$ шагов (т.е. чтобы вероятность ошибки была $\sim 2^{-\log p}$).

Алгоритм 2. Find_point

Вход: р, q, A, B.

Выход: точка $L \in E(\mathbb{F}_p)$ порядка q.

- $oldsymbol{1}$ х $\stackrel{\$}{\leftarrow} \mathbb{F}_p$ т.ч. $\chi^3 + A\chi + B$ квадрат в \mathbb{F}_p
- $2 y \stackrel{\$}{\leftarrow} \left\{ \pm \sqrt{x^3 + Ax + B} \right\}, L := (x, y)$
- **3** if $q \cdot L \neq \infty$: перейти к шагу 1.
- 4 return L

Алгоритм 3. Prove_prime

Вход: p, LB — число бит в числе такое, что детерминированные алгоритмы простоты эффективны для этого числа.

Выход: сертификат простоты

- 1 $i = 0, p_0 = p$
- 2 while $p_i > 2^{LB}$:
 - **2.1** $(A_i, B_i), p_{i+1} \leftarrow Gen_curve(p_i)$
 - **2.2** $L_i \leftarrow Find_point(p_i, p_{i+1}, A, B)$
 - **2.3** i := i + 1
 - **2.4 if** $i \geq (\log p)^{\log \log p}$ или $2 \mid p_i$ или $3 \mid p_i$ перейти к шагу 1
- проверить р_і на простоту детерминированным алгоритмом
 if не доказано, что р_і простое:
 перейти к шагу 1

Корректность

- р простое. Тогда выход С сертификат:
 «свидетельство» простоты р. На шагах 2.1, 2.2 мы получаем кривую Е_{A_i,B_i} и точку L_i порядка р_{i+1}, удовлетворяющие условиям Критерия простоты.
- р составное. Тогда получим делители р на шаге 3 (или раньше) алгоритма Find_point(), аналогично алгоритму факторизации.

Сложность

Алг. 1. Gen_curve

Самый затратный шаг – вычисление $\#\mathsf{E}_{\mathsf{A},\mathsf{B}}(\mathbb{F}_{\mathfrak{p}})$ \Longrightarrow алгоритм Схоофа-Элкиса-Аткина: $\widetilde{O}(\log^4\mathfrak{p})$.

Алг. 2. Find_point

Самые затратные шаги:

Шаг 1: $x \overset{\$}{\leftarrow} \mathbb{F}_p$ – кв. вычет с вероятностью O(1).

Шаг 4: быстрое умножение на q:

 $\widetilde{O}(\log q \cdot \log \mathfrak{p}) = \widetilde{O}(\log^2 \mathfrak{p})$ битовых операций.

Алг. 3. Prove_prime

На шаге 2, p_i уменьшается на 2 \Longrightarrow $O(\log p)$ итераций. Доминирующий шаг: подсчёт точек в Gen_curve \Longrightarrow общее время работы: $\widetilde{O}(\log^5 p)$

Количество кривых $E_{A,B}$, не удовлетворяющих условиям шага 1 в Gen_curve() = $O(\log^3 p)$ (эвристика)

Проверка сертификата. Алгоритм 4. Check_prime

```
Вход: p_0, C = ((A_0, B_0), L_0, p_1, ..., (A_{i-1}, B_{i-1}), L_{i-1}, p_{i-1})
Выход: {Reject, Accept}

1 for j = 0 ... i - 1:

(a) assert (2 \nmid p_j)
(b) assert (3 \nmid p_j)
(c) assert (gcd(4A_j^3 + 27B_j^2, p_j) = 1)
(d) assert (p_{j+1} > (p_j^{1/4} + 1)^2)
(e) assert L_j \neq \infty
(f) assert p_{j+1}L_j = \infty
```

Корректность

- Check_prime() возвращает Accept \Rightarrow p_i простое \Rightarrow p_{i-1} простое по Критерию простоты (\Rightarrow . . . \Rightarrow p_0 простое)
- Условия (a),(b) проверяются на шаге 2.4. алгоритма 3. Prove_prime
- (c) шаг 1 в Алг.1. Gen_curve
- ullet (d) Теорема Хассе-Вейля: $\#\mathsf{E}_{\mathsf{A},\mathsf{B}}(\mathbb{F}_{\mathfrak{p}_{\mathsf{j}}}) \geq (\sqrt{\overline{\mathfrak{p}_{\mathsf{j}}}}-1)^2 \Rightarrow$

$$p_{j+1} = \frac{\#E(\mathbb{F}_{p_j})}{2} \ge \frac{(\sqrt{p_j} - 1)^2}{2} > (p_j^{1/4} + 1)^2 \quad \forall p_j > 37$$

(для малых p_j проверка на простоту тривиальна)

• (e), (f) проверяются в Find_point, шаг 3.

Время работы

- Проверка каждого $\mathfrak{p}_{\mathfrak{j}}: O(\log^3 \mathfrak{p})$ шаг (f) самый затратный.
- Всего: $O(\log p)$ различных p_j в сертификате $C \Rightarrow O(\log^4 p)$.

Литература

- 📒 H. Cohen и H. W. Lenstra. Primality testing and Jacobi sums. 1984.
- S. Goldwasser и J. Kilian. <u>Primality testing using elliptic curves</u>. 1999.
- H. W. Lenstra Jr. Factoring integers with elliptic curves. 1987.
- L. C. Washington. Elliptic curves: number theory and cryptography. 2008.

Контакты

snovoselov@kantiana.ru