Эллиптические кривые Лекция 9. Выбор кривой для криптографии

Семён Новосёлов

БФУ им. И. Канта

2025

Как выбрать кривую, подходящую для криптографии?

Требования:

- Пезопасность:
 - для параметра безопасности λ сложность наилучшей известной атаки должна быть $\approx 2^{\lambda}$
 - на данный момент $\lambda \approx 128$.
- 2 Эффективность:
 - групповой закон должен вычисляться быстро.

І. Безопасность

$$E/\mathbb{F}_q : y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$$

- $N = \#E(\mathbb{F}_q)$, вычисляем с помощью SEA за $O(\log^4 q)$
- N = O(q) (граница Хассе-Вейля)
- ullet $G=\langle P
 angle$ для $P\in E(\mathbb{F}_q)$
- для эффективности: $\#\mathsf{G} = \operatorname{ord} \mathsf{P} \approx \#\mathsf{E}(\mathbb{F}_{\mathsf{q}})$

DLOG:
$$Q = [\ell]P$$
, $(P, Q) \mapsto \ell$

Каждая известная атака накладывает ограничения по безопасности на (N,q,ℓ) .

Атака BSGS или *р***-методом Полларда**

Алгоритм BSGS нахождения порядка точки из лекции по подсчёту точек можно адаптировать для поиска **DLOG**.

Сложность: $\widetilde{O}(\sqrt{\#G}) = \widetilde{O}(\sqrt{q})$ по времени и по памяти.

• ρ -метод Полларда: сложность по памяти $O(\operatorname{polylog} q)$.

Вывод:

- для уровня безопасности $\lambda = 128$ требуется кривая с подгруппой G порядка $\approx 2^{256}$
- т.е. над полем \mathbb{F}_q размера $q \approx 2^{256}$

ρ-метод Полларда

```
Вход: R, P \in E(\mathbb{F}_a), r \in \mathbb{N}, h : E(\mathbb{F}_a) \rightarrow {1, . . . , r}.
Выход: \ell, т.ч. R = \lceil \ell \rceil P
  1 Сгенерировать r случайных чисел \alpha_i, \beta_i;
  2 Вычислить Q_i = [\alpha_i]P, T_i = [\beta_i]R;
  Задать случайное блуждание:
      f: (P, a, b) \mapsto (P + Q_{h(P)} + T_{h(P)}, a + \alpha_{h(P)}, b + \beta_{h(P)});
  (P_1, a_1, b_1) = (P, 1, 0):
  (5) (P_2, a_2, b_2) = f(P_1, a_1, b_1):
  6 while P_1 \neq P_2 do:
  (P_1, a_1, b_1) = f(P_1, a_1, b_1):
  (P<sub>2</sub>, a<sub>2</sub>, b<sub>2</sub>) = f(f(P_2, a_2, b_2)):
  9 return \ell = (a_2 - a_1) \cdot (b_1 - b_2)^{-1} \mod \# \langle P \rangle
```

Атака Полига-Хеллмана

Идея: решить задачу DLOG в подгруппах G с помощью ρ-метода Полларда и восстановить искомый DLOG в G по KTO.

$$\#G = \mathfrak{p}_1^{e_1} \cdot \ldots \cdot \mathfrak{p}_m^{e_m} \implies G \simeq \mathbb{Z}/\mathfrak{p}_1^{e_1}\mathbb{Z} \oplus \ldots \oplus \mathbb{Z}/\mathfrak{p}_m^{e_m}\mathbb{Z}$$

т.е.
$$G\simeq G_1\oplus ...\oplus G_{\mathfrak{m}}$$
, где $\#G_1=\mathfrak{p}_1^{\mathfrak{e}_1},\ldots,\#G=\mathfrak{p}_{\mathfrak{m}}^{\mathfrak{e}_{\mathfrak{m}}}.$

Сложность:
$$\widetilde{O}(\sum e_i(\log \#G + \sqrt{p_i}))$$

Вывод: для безопасности #G = cr, где r – большое простое число, c – малое число.

Комбинируя условия двух атак получаем, что группа точек кривой должна как минимум:

- содержать подгруппу простого порядка размера 256-бит для уровня безопасности 128-бит.
- соответственно, размер поля $q \approx 2^{256}$.

Атака спуском Вейля

При $q = p^n$ можно определить ограничение Вейля:

$$W/\mathbb{F}_{\mathfrak{p}}:=W_{\mathbb{F}_{\mathfrak{p}^n}/\mathbb{F}_{\mathfrak{p}}}(\mathbb{F}_{\mathfrak{p}})=\mathsf{E}(\mathbb{F}_{\mathfrak{p}^n}).$$

- Это абелево многообразие размерности n, т.е.
 проективное многообразие, обладающее структурой группы.
- Поэтому DLOG на $E/\mathbb{F}_{\mathfrak{p}^n}$ можно свести к $W/\mathbb{F}_{\mathfrak{p}}.$

Если $W\subseteq \operatorname{Jac}_D$ для некоторой кривой $\operatorname{D}/\mathbb{F}_p$ рода $g\ge n$, то получаем изменение сложности DLOG:

- $g \ge \log_g \mathfrak{p}$, D гиперэллиптическая, $\widetilde{O}(\mathfrak{p}^{\mathfrak{n}/2})$ (Pollard) $\implies L_{\mathfrak{p}^g}(1/2,2.732)$ (Enge-Gaudry) получаем переход к субэкспоненциальной сложности при $g \approx \mathfrak{n}$.
- $g < \log_g \mathfrak{p}$, D гиперэллиптическая, $\widetilde{O}(\mathfrak{p}^{n/2})$ (Pollard) $\implies \widetilde{O}(\mathfrak{p}^{2-2/g})$ (GTTD).

Например, при n=8, g=4 получаем переход от $\widetilde{O}(\mathfrak{p}^4)$ к $\widetilde{O}(\mathfrak{p}^{1.5}).$

- Кривая D не всегда существует для кривой $E(\mathbb{F}_{\mathfrak{q}^n})$ и заданного рода $g \geq n$.
- В общем случае найти кривую D не просто.
- Условия при которых ∃ D не до конца ясны.

В общем случае, работать с абелевыми многообразиями сложнее, чем с эллиптическими кривыми.

Консервативный выбор размера поля для криптографии с учётом существования атаки спуском Вейля: $\mathbf{q} = \mathbf{p}$.

Атака с помощью билинейных спариваний

Пусть r=#G, $G\subseteq E(\mathbb{F}_q)$ и $\mu_r=\{x\in\overline{\mathbb{F}}_q|x^r=1\}.$ Атака использует следующее отображение на E[r].

Теорема (спаривание Вейля)

 \exists отображение $e_n: \mathsf{E}[r] imes \mathsf{E}[r] o \mu_r$ со свойствами:

- $e_r(T, T) = 1$
- 2 $e_r(T, S) = e_r(S, T)^{-1}$
- $e_r(S_1+S_2,T)=e_r(S_1,T)e_r(S_2,T)$ (билинейность) $e_r(S,T_1+T_2)=e_r(S,T_1)e_r(S,T_2)$
- $e_r(S,T)=1, \forall T \implies S=\mathcal{O}$ (невырожденность) $e_n(S,T)=1, \forall S \implies T=\mathcal{O}$

Другие билинейные отображения: спаривание Тейта, эта-спаривание.

Степень вложения: минимальное целое k т.ч. $E[r] \subseteq E(\mathbb{F}_{q^k})$.

 $(\beta = e_r(\ell P, R) = e_r(P, R)^{\ell} = \alpha^{\ell})$

- Атака на DLOG: $|\langle P \rangle| = r$, $Q = \ell P$.
 - Выбрать случайную точку R.
 - $\alpha = e_r(P, R)$
 - $\beta = e_r(Q, R)$

 - $4 \ell = \mathsf{DLOG}(\alpha, \beta) \mathsf{B} \mathbb{F}_{q^k}$
- Конструктивное использование: ZCash, IBE, SIKE.

- Сложность решения DLOG в $\mathbb{F}_{\mathfrak{a}^k}$ используя NFS (и его модификации): $L_{q^k}(1/3, c)$.
- Для уровня безопасности $\lambda = 128$ требуется поле размера 3072-бит [ECRYPT'18].

Для стойкости к атаке с помощью билинейных спариваний необходимо: k > 24 (3072/128).

• Т.к. $\mu_r \subseteq \mathbb{F}_{\mathfrak{q}^k} \iff \mathfrak{q}^k \equiv 1 \pmod{r}$. Достаточно проверить, что:

проверить, что:
$$r \nmid q^k - 1,$$

для k = 1, ..., 24.

Аномальные кривые

Кривые с $\#E(\mathbb{F}_{\mathfrak{p}})=\mathfrak{p}$ называются аномальными.

• Если $\#G=\mathfrak{p}$ для кривой $E/\mathbb{F}_{\mathfrak{p}}$, то \exists гомоморфизм $E[\mathfrak{p}]\to\Omega^0_E(\mathbb{F}_{\mathfrak{p}})$

Здесь $\Omega_E^0(\mathbb{F}_p)$ – \mathbb{F}_p -векторное пространство голоморфных дифференциалов, где DLOG решается время O(polylog(p))

- Подробнее: [Galbraith'12, §26.4.1].
- Условия легко проверяются.

Атаки на кривые с автоморфизмами

Существуют модификации методов BSGS или ρ -метода Полларда, использующие автоморфизмы.

- Идея: при поиске DLOG перебирать вместо точек Р классы эквивалентности $(P, \psi(P), \psi^2(P), \dots, \psi^{\alpha-1}(P))$ для $\alpha = \operatorname{ord} \psi$.
- Сложность: для модифицированного ρ -метода Полларда $O(\sqrt{\frac{\pi}{2\alpha}}\sqrt{\#G})$ [Galbraith'12, Th. 14.4.3]

 Может быть обобщено на эндоморфизмы, в случае если их можно эффективно вычислить.

Пример кривой:

$$E/\mathbb{F}_p: y^2 = x^3 + a_6,$$

- Автоморфизм: $(x,y)\mapsto (\zeta_3x,y)$ для $\mathfrak{p}\equiv 1\pmod 3$, $\alpha=3.$
- Эффективная арифметика, т.к. $a_4 = 0$.
- Однако нужно учитывать ускорение DLOG.

Условия безопасности для $\lambda = 128$ относительно основных атак.

$$E/\mathbb{F}_q: y^2 = x^3 + a_4x + a_6$$

- ① $r=\#\langle P\rangle\subseteq E(\mathbb{F}_q)$ простое число, $\#E(\mathbb{F}_q)/r$ малое число (стойкость к методу Полига-Хеллмана)
- **2** $r \approx 2^{256}$ (стойкость к ρ -методу Полларда)
- **3** q = p (стойкость к спуску Вейля)
- \mathbf{q} $\mathbf{r} \nmid \mathbf{q}^k \mathbf{1}$ для $k \leq 24$ (стойкость к атакам на спариваниях)
- $\mathbf{5} \ \mathbf{r} \neq \mathbf{p}$ (кривая не аномальная)

Дополнительно

- Параметры кривой должны сопровождаться детальным описанием откуда они взялись.
 - сиды всех псевдослучайных функций
 - выбор псевдослучайных функций / хеш-функций (если $a_4 = hash(seed), a_6 = hash(seed)$)
- Условия только для DLOG, не гарантируется безопасное использование Е в протоколах

II. Эффективность

Есть 3 основных формы кривой Е.

Ператкая форма Вейерштрасса:

$$y^2 = x^3 + ax + b$$

$$By^2 = x^3 + Ax^2 + x$$

Кривые Эдвардса:

$$x^2 + y^2 = 1 + dx^2y^2$$

Сравнение операций

Кривая/Операция	P + Q	2P
Кривая Вейерштрасса (проект. коорд.)	12M + 2S	5M + 2S
Кривая Вейерштрасса (коорд. Якоби)	11M + 5S	1M + 8S
Кривая Эдвардса	10M + 1S	3M + 4S
Кривая Монтгомери	$6M + 2S^1$	4M

 $^{^{1}}$ для 2P + Q

Литература

- Cohen et al. "Handbook of elliptic and hyperelliptic curve cryptography". 2005
- 📒 Galbraith. "Mathematics of public key cryptography". 2012
- Bernstein, Lange. "SafeCurves: choosing safe curves for elliptic-curve cryptography" https://safecurves.cr.yp.to

Контакты snovoselov@kantiana.ru