Эллиптические кривые

Лекция 11. Схема обмена ключами CSIDH

Семён Новосёлов

БФУ им. И. Канта

2025

Схема CSIDH

Предложена Castryck, Lange, Martindale, Panny и Renes.

- Основана на действии групп
- Суперсинуглярные кривые
- Сложность классической атаки: $\mathcal{O}(p^{1/4})$
- Сложность квантовой атаки: L(1/2)
- SIDH: An Efficient Post-Quantum Commutative Group Action. ASIACRYPT 2018
- https://csidh.isogeny.org/

Схемы на действиях групп

Схема CSIDH и многие другие схемы строятся на принципе действия группы на множество.

Определение

Пусть G – группа, X – множество. Тогда G действует на X, если:

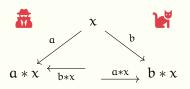
- \bigcirc 3 отображение $*: G \times X \rightarrow X$
- \bigcirc $\forall g_1, g_2 \in G$ и $x \in X$:

$$g_1 * (g_2 * x) = (g_1g_2) * x$$

Требования для построения криптосистем:

• восстановление g по известному g*x должно быть сложной задачей (обобщение задачи **DLOG**)

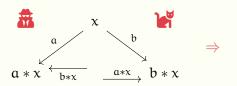
Протокол Диффи-Хеллмана на действиях групп

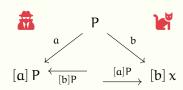


- $x \in X$ публичный параметр
- $a, b \in G$ секретные ключи абонентов
- общий секретный ключ:

$$(ab) * x = a * (b * x) = b * (a * x)$$

Пример. Классическая схема на ЭК

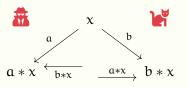




- $X = E(\mathbb{F}_p), x = P \in E(\mathbb{F}_p)$
- ullet G $=\mathbb{Z}_{\mathrm{r}}^{ imes}$, где $\mathrm{r}=\#\left\langle \mathsf{P}\right\rangle$
- $a, b \in \mathbb{Z}_r^{\times}$
- * скалярное умножение точки на число

Аналогично: схема Диффи-Хеллмана на $\mathbb{F}_{\mathfrak{p}}^{\times}$.

Постквантовая схема CSIDH



Идейно:

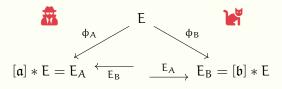
 $X = SS_p$

ullet множество суперсингулярных кривых над $\mathbb{F}_{\mathfrak{p}}$

G = "изогении с точностью до эндоморфизмов"

- эндоморфизмы образуют петли и циклы в графе изогений, поэтому изогении можно редуцировать $\operatorname{mod} \operatorname{End}(\mathsf{E})$
- *: действие изогении на кривую:
 - формулы Велу + соотношение Дойринга для связи эндоморфизмов с изогениями

Постквантовая схема CSIDH



Общий ключ:
$$E_{AB} = [\mathfrak{a}] * E_B = [\mathfrak{b}] * E_A = [\mathfrak{a}\mathfrak{b}] * E_0$$

- для формирования ключа требуется коммутативность
- из-за этого доступны квантовые субэксп. атаки

Кольца эндоморфизмов эллиптических кривых

Кольцо эндоморфизмов $\operatorname{End}(\mathsf{E})$ эллиптической кривой E над конечным полем \mathbb{F}_{q} изоморфно 1 :

- порядку в квадратичном мнимом поле (обычные кривые)
- максимальному порядку в алгебре кватернионов (суперсингулярные кривые)

Порядок – конечно порожденное над \mathbb{Z} подкольцо (кольца целых в первом случае или алгебры кватернионов во втором).

Т.е. подкольцо $\mathcal O$ вида $\mathcal O=\omega_1\mathbb Z\times\ldots\times\omega_k\mathbb Z$ для некоторых ω_i из базового кольца.

¹Deuring M. Die Typen der Multiplikatorenringe elliptischer Funktionenkörper. 1941

Соответствие Дойринга

Эквивалентность между изогениями эллиптических кривых и идеалами кольца эндоморфизмов.

Идеалы по определению замкнуты относительно умножения на элементы кольца (эндоморфизмы).

- реализация идеи "работы с изогениями с точностью до эндоморфизма"
- главные идеалы соответствуют эндоморфизмам
- группа классов $\mathrm{CL}_\mathcal{O}$: фактор-группа группы идеалов по главным идеалам (эндоморфизмам)

Соответствие Дойринга в явном виде

Пусть $\mathfrak a$ – идеал порядка $\mathcal O$, который изоморфен $\operatorname{End}(\mathsf E)$ или его подкольцу. Определим $\mathfrak a$ -кручение как

$$E[\mathfrak{a}] = \left\{P \in E(\overline{\mathbb{F}}_{\mathfrak{q}}) : \alpha(P) = P_{\infty} \ \forall \alpha \in I \right\}.$$

Тогда идеалу $\mathfrak a$ сопоставим изогению $\varphi_{\mathfrak a}$ с ядром $E[\mathfrak a]$.

В обратную сторону: пусть ф-изогения, тогда соответствующий ей идеал равен

$$\mathfrak{a}_{\varphi} = \{\alpha \in \mathcal{O} : \alpha(P) = P_{\infty} \ \forall P \in \ker(\varphi)\}.$$

CSIDH

Публичные параметры схемы:

- простое $\mathfrak{p}=4\cdot\ell_1\cdots\ell_n-1$, где ℓ_1,\ldots,ℓ_n малые простые.
- Суперсингулярная эллиптическая кривая $E_0: y^2 = x^3 + x$ над полем \mathbb{F}_p .
- $\mathfrak{l}_{\mathfrak{i}}=(\ell_{\mathfrak{i}},\pi_{\mathfrak{p}}-1)$, $\mathfrak{l}_{\mathfrak{i}}^{-1}=(\ell_{\mathfrak{i}},\pi_{\mathfrak{p}}+1)$ идеалы $\mathbb{Z}[\pi_{\mathfrak{p}}]$
- m наименьшее положительное целое: $2m+1 \geq \sqrt[n]{\#\operatorname{Cl}(\mathbb{Z}[\pi_p])}.$

Схема обмена ключами

Пользователь 🛣:

- **1** выбирает секретный вектор $(e_1, ..., e_n) \in \{-m, ..., m\}^n$
- $oldsymbol{2}$ определяет класс идеала $[\mathfrak{a}]=[\mathfrak{l}_1^{e_1}\cdots\mathfrak{l}_n^{e_n}]\in\mathrm{Cl}(\mathbb{Z}[\pi_p])$
- 3 вычисляет свой открытый ключ $E_A = [\mathfrak{a}] * E_0$

Пользователь 🕌:

- **1** выбирает секретный вектор $(f_1, ..., f_n) \in \{-m, ..., m\}^n$
- $oldsymbol{2}$ определяет класс идеала $[\mathfrak{b}]=[\mathfrak{l}_1^{f_1}\cdots\mathfrak{l}_n^{f_n}]\in\mathrm{Cl}(\mathbb{Z}[\pi_p])$
- **3** вычисляет свой открытый ключ $E_B = [\mathfrak{b}] * E_0$

Общий ключ: $E_{AB} = [\mathfrak{a}] * E_B = [\mathfrak{b}] * E_A = [\mathfrak{a}\mathfrak{b}] * E_0$

Размеры ключей

Схема	Уровень стойкости	Открытый ключ	Закрытый ключ	Общий ключ
CRS	128/56	64	8	64
OSIDH	128/128	36	31	36
CSIDH-512	128/62	64	32	64

Таблица 1: Размеры ключей (в байтах) для актуальных схем обмена ключами на изогениях.

- CRS/CSIDH: субэкспоненциальные квантовые атаки
- OSIDH: экспоненциальные квантовые атаки

Контакты

snovoselov@kantiana.ru