Эллиптические кривые

Лекция 12. Схема подписи SQISign

Семён Новосёлов

БФУ им. И. Канта

2025

Введение

SQISign (Short Quaternion and Isogeny Signature) – схема подписи, построенная применением преобразования Фиата-Шамира к протоколу доказательства с нулевым разглашением (Σ-протоколу).

De Feo L., Kohel D., Leroux A., Petit C., Wesolowski B. "SQISign: compact post-quantum signatures from quaternions and isogenies". AsiaCrypt 2020. https://eprint.iacr.org/2020/1240

Последняя версия схемы:

https://sqisign.org

∑-протокол

Позволяет доказать знание секрета без раскрытия самого секрета.

Преобразование Фиата-Шамира

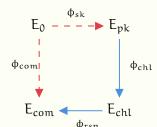
Позволяет построить цифровую подпись из любого Σ -протокола.

- m сообщение для подписи
- при генерации chl заменяем 🕌 на хэш-функцию:

$$chl = hash(m||com)$$

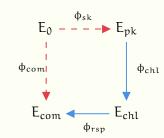
- подпись s := (com, rsp)
- проверка: вычисляем chl = hash(m||com) и проверяем условие Σ -протокола

Подпись SQISign. Параметры


- \bullet E₀ (открытая) кривая с известным End(E₀)
- $\varphi_{sk}: E_0 \to E_{pk}$ случайная секретная изогения
- Е_{pk} открытый ключ
- End(E_{pk}) секретный ключ

Замечание:

- зная $\varphi: E_0 \to E$ можно вычислить End(E) за полиномиальное время
- зная $End(E_1)$ и $End(E_2)$ можно вычислить изогению $\varphi:E_1\to E_2$ за полиномиальное время


Подпись SQISign. ∑-протокол

- **1** $\frac{1}{100}$ генерирует секретную ϕ_{com} , отсылает E_{com}
- **2 Ж** генерирует случ. ϕ_{chl} , отправляет ϕ_{chl}
- 🔞 🛣 вычисляет и отправляет ф_{rsp}
- $m{4}$ проверяет, что $m{\phi}_{rsp}$ изогения $m{E}_{chl}
 ightarrow m{E}_{com}$

Подпись SQISign. ∑-протокол

- **1** $\frac{1}{100}$ генерирует секретную ϕ_{com} , отсылает E_{com}
- 3 $\stackrel{\bigstar}{m}$ вычисляет и отправляет ϕ_{rsp}
- 🕢 🕍 проверяет, что φ_{rsp} изогения $E_{chl} \to E_{com}$

Корректность:

- \overline{m} знает $\operatorname{End}(\mathsf{E_0})$ и $\varphi_{\mathsf{com}} \implies \mathsf{вычисляет} \ \mathsf{End}(\mathsf{E}_{\mathsf{com}})$
- \overline{a} знает $\operatorname{End}(\mathsf{E}_{\mathsf{pk}})$ и $\varphi_{\mathsf{chl}} \implies \mathsf{находит} \ \mathsf{End}(\mathsf{E}_{\mathsf{chl}})$
- $\stackrel{\bigstar}{m}$ знает $\operatorname{End}(\mathsf{E}_{\mathsf{chl}}), \operatorname{End}(\mathsf{E}_{\mathsf{com}}) \implies$ вычисляет φ_{rsp}

Подпись SQISign. Преобразование Фиата-Шамира

Генерация chl:

$$chl = hash(j(E_{pk})||j(E_{com})||m),$$

 φ_{chl} строится детерминировано по chl.

Подпись: $s := (E_{com}, \phi_{rsp})$

Проверка: находим ϕ_{chl} и проверяем, что ϕ_{rsp} – изогения $E_{chl} \to E_{com}$.

Представление изогений

- ϕ_{chl} , ϕ_{rsp} открыты
- от представления зависит размер подписи и скорость проверки
- представление изогений не должно давать возможность вычислять эндоморфизмы:
 - по одному эндоморфизму кривой Е можно вычислить End(E) за полиномиальное время

SQISign. Оригинальная схема

- изогении представляются в виде сжатых ядер цепочек изогений малой степени
- ϕ_{rsp} вычисляется с помощью KLPT-алгоритма

SQISignHD

- конструктивное применение атаки Кастрика-Декру
- изогении представляются в компактном виде $(d, E_{aux}, \varphi(P), \varphi(Q))$
- проверке подписи выполняется Кастрика-Декру

SQIPrime

 вместо композиций изогений малых степеней используются изогении большой степени и новый алгоритм для их вычисления Clapoti

Размеры ключей/скорость

Схема	Уровень стойкости	Открытый ключ	Закрытый ключ	Подпись
SQISign	NIST-1	64	16	204
SQISignHD	NIST-1	64	16	109
SQISign2D-West	NIST-1	65	353	148
SQIPrime	NIST-1	191	~	299

Таблица 1: Размеры ключей (в байтах) для схем подписи на изогениях.

Скорость работы

	Key gen.	Signing	Verif.
Original SQIsign	2800	4600	93
Optimized SQIsign	400	1880 620_{ms}	29 10ms
SQIsignHD	190	115 38_{ms}	?
SQIsign2D-West	60	160 53_{ms}	9 3m s
SQIsign2D-West + heuristics	58	100 33_{ms}	9

For NIST-V security level: cost x6

• Источник: Benjamin Wesolowski, ECC2024

Литература

- Boneh D., Shoup V. "Graduate Course in Applied Cryptography" https://toc.cryptobook.us
- SQIsign: Algorithm specifications and supporting documentation. https://sqisign.org/spec/sqisign-20250707.pdf

Контакты

snovoselov@kantiana.ru