### Эллиптические кривые

#### Лекция 13. Криптоанализ схем на изогениях

Семён Новосёлов

БФУ им. И. Канта

2025





# Граф изогений

Граф с вершинами – j-инвариантами эллиптических кривых и рёбрами – изогениями.

**Обозначение:**  $X(K,\ell)$ , где K – поле,  $\ell$  – степень изогении.

### Задача поиска изогении

#### Общая задача нахождения изогении

Даны две изогенные кривые  $E_1$  и  $E_2$ . Вычислить изогению между ними.

Теорема Тейта:  $E_1 \sim E_2 \iff \#E_1 = \#E_2 \implies$  легко проверить существование изогении.

## Методы поиска изогений

- на основе парадокса дней рождений
- сведение задачи к вычислению End(E)

# Методы на основе парадокса дней рождений

- модификация алгоритмов BSGS/Полларда/vOW
- исп. случайные блуждания в графе изогений

#### Сложность для суперсингулярных кривых:

- $\widetilde{\mathcal{O}}(\mathfrak{p}^{1/2})$  по времени/памяти в худшем случае или
- $\widetilde{\mathcal{O}}(\mathfrak{p}^{3/4})$  по времени в среднем для алгоритма с малой памятью (vOW)

Число изогенных суперсингулярных кривых  $\approx \frac{p}{12}$ .

# Как задавать случайные блуждания?

- через ядра изогений подгруппы  $\mathsf{E}[\ell]$
- через модулярные многочлены

**Модулярный многочлен** – это многочлен  $\Phi_{\ell} \in \mathbb{Z}[X,Y]$  т.ч.  $\Phi_{\ell}(j(E_1),j(E_2)) = 0 \iff \exists$  изогения степени  $\ell$  между  $E_1$  и  $E_2$ .

 $\Longrightarrow$  находясь в вершине j(E), находим корни  $\Phi_\ell(j(E),Y)$  и берём случайный.

## Суперсингулярная задача поиска изогении

Эллиптическая кривая  $E/\mathbb{F}_q$ ,  $q=p^n$  – суперсингулярная, если  $p\mid t=\#E(\mathbb{F}_q)-q-1.$ 

Факт: 
$$j(E) \in \mathbb{F}_{p^2}$$
 [Silverman, Th. 3.1.(a).iii]

 $\Longrightarrow$  суперсингулярный граф изогений определён над  $\mathbb{F}_{\mathfrak{p}^2}$ 

Также над  $\mathbb{F}_{\mathfrak{p}^2}$  он связен для любой степени изогении  $\ell$ .

## Алгоритм Delfs-Galbraith

Пусть  $E_1$ ,  $E_2$  определены над  $\mathbb{F}_{p^2}$ .

#### Идея:

- найти изогении  $\phi_1: E_1 \to E_1'/\mathbb{F}_p$  и  $\phi_2: E_2 \to E_2'/\mathbb{F}_p$ ,
- ullet найти изогению  $\varphi': \mathsf{E}_1' o \mathsf{E}_2'$  в графе изогений над  $\mathbb{F}_\mathfrak{p}$
- вернуть  $\phi: E_1 \to E_2$  как  $\phi = \widehat{\varphi}_2 \circ \varphi' \circ \varphi_1$

Граф изогений  $X(\mathbb{F}_{\mathfrak{p}},\ell)$  меньше, чем  $X(\mathbb{F}_{\mathfrak{p}^2},\ell)$  – состоит из  $\widetilde{\mathcal{O}}(\sqrt{\mathfrak{p}})$  вершин, но он не связный и надо брать несколько  $\ell$ .  $\Longrightarrow$  сложность поиска  $\Phi'$  равна  $\widetilde{\mathcal{O}}(\mathfrak{p}^{\frac{1}{4}})$ 

Общая сложность алгоритма Delfs-Galbraith:  $\widetilde{\mathcal{O}}(\mathfrak{p}^{1/2})$ , доминирующие шаги – нахождение  $\phi_1, \phi_2$ .

## Сведение задачи к вычислению End(E)

- Задачи поиска изогении и вычисления End(E) эквивалентны [Wesolowski'21] (одна за полиномиальное время сводится к другой).
- Один эндоморфизм ⇒ всё кольцо за полиномиальное время [Page-Wesolowski'23]
- Детектирование эндоморфизмов малых степеней возможно с помощью нахождения классового многочлена Гильберта
  - ⇒ алгоритм нахождения изогений [Love-Boneh'19]

### Квантовые атаки - сложность

- суперсингулярные кривые:  $\widetilde{\mathcal{O}}(\mathfrak{p}^{1/2}) \implies \widetilde{\mathcal{O}}(\mathfrak{p}^{1/4})$
- обычных кривые: L(1/2)

### Литература

- Silverman J.H. "The Arithmetic of Elliptic Curves", 2ed (2009)
- **!** Delfs C., Galbraith S.D. "Computing isogenies between supersingular elliptic curves over  $\mathbb{F}_p$ ". 2016. DCC. https://arxiv.org/pdf/1310.7789
- Wesolowski B. "The supersingular isogeny path and endomorphism ring problems are equivalent" (2021) https://ieeexplore.ieee.org/document/9719728
- Page A., Wesolowski B. "The supersingular Endomorphism Ring and One Endomorphism problems are equivalent" (2023) https://eprint.iacr.org/2023/1399
- Love J., Boneh D. Supersingular Curves With Small Non-integer Endomorphisms (2019) https://arxiv.org/pdf/1910.03180

#### Контакты

snovoselov@kantiana.ru