
Основы построения защищенных
компьютерных сетей

Лекция 10
 Переполнения буфера

Семён Новосёлов

2025

Переполнения буфера
● Переполнение стека
● Переполнение кучи

В каких программах может встречаться?

 Ruby

 Python

 PHP

Программы на C/C++

Интерпретаторы
Веб-сервера

Браузеры
Серверы БД

В общем случае: любые программы на языках с прямым управлением памятью

Переполнение буфера. Вводный пример

int main(){

 char buf[100];

 int i;

 for(i=0; i<=108; i++){

 buf[i] = 'A';

 }

 return 0;

}

В примере производится запись за
пределы буфера.

В отсутствии защиты, получается
бесконечный цикл. Почему?

Переполнение буфера. Вводный пример

В примере производится запись за
пределы буфера.

В отсутствии защиты, получается
бесконечный цикл. Почему?

int main(){

 char buf[100];

 int i;

 for(i=0; i<=108; i++){

 buf[i] = 'A';

 }

 return 0;

}

Ответ: бесконечно перезаписывается переменная i,
лежащая в памяти после буфера

Переполнение стека. Пример
#include <stdio.h>
#include <string.h>

void hello(char* str){
 char buf[128];
 strcpy(buf, str);
 printf("Hello, %s\n", buf);
}

int main(int argc, char* argv[]){
 if(argc < 2){
 printf("Enter argument!\n");
 return 1;
 }
 hello(argv[1]);
 return 0;
}

Код hello.c

● программа принимает аргумент
извне и записывает в массив buf

● нет проверки выхода за границы
массива

● локальные переменные хранятся
в стеке

● перезаписывается память в
стеке за массивом

Чем опасно?
В памяти хранятся адреса, по которым переходит программа в процессе
работы.

Примеры:

● адреса возврата при вызове функций
● указатель на функцию-callback

Перезапись позволяет выполнить код по любому адресу.

Как выполняются программы?
Упрощенно:

1. ОС загружает код из исполняемого файла в память
2. выделяет память под стек и другие данные
3. передает управление на точку входа (Entry Point)

Распределение памяти для hello.c

Edb: Memory Regions (Linux, x64)

Машинный код

Ассемблер: текстовая запись для удобства

48 31 c0 48 31 ed 50 48 bd 63 2f 73 68

Процессор

Память

Двоичный код программы: последовательность
кодов команд (опкодов) процессора

Система команд зависит от архитектуры:
● Intel x64/x32: Intel® 64 and IA-32 Architectures Software Developer’s Manual
● Arm: Arm® A64 Instruction Set Architecture

Пример

машинный код функции main

int main(int argc, char* argv[]){
 if(argc < 2){
 printf("Enter argument!\n");
 return 1;
 }
 hello(argv[1]);
 return 0;
}

Архитектура IA-64
Регистры: встроенная память в процессоре

● процессор сначала загружает данные в
регистры, а затем обрабатывает

● используются для передачи параметров в
функции

RIP: указатель на текущую
выполняемую инструкцию в
программе

RSP: указатель на вершину
стека

Что такое стек?
Стек – зарезервированная область памяти для работы с
динамическими данными.

Принцип LIFO: последним пришёл — первым ушёл.

Растет в сторону меньших адресов.

Основные действия со стеком:

● push: помещение элемента в стек
● pop: извлечение элемента из стека
● при выполнении команд процессор

увеличивает/уменьшает регистр RSP

Инструкции call и ret
call: вызов функции

● помещает в стек по адресу в регистре rsp (то есть в вершину стека),
текущее значение регистра rip (счетчика команд) — адрес возврата

● переходит по адресу, указанному в качестве операнда

ret: возврат из функции

● производит обратные действия к call
● извлекает из стека значение по адресу в регистре rsp и

переходит по нему

Структура стека
помещается в стек при вызове
hello() с помощью call

указатель на main(),
перезаписывается внешними
данными при переполнении буфера
buf в hello.c

Можно подставить свой адрес и при
вызове ret программа перейдет по
нему

здесь хранится буфер buf
из hello() в hello.c

Эксплуатация
Предполагаем в начале, что нет защитных механизмов.

1. записать рабочий машинный код (шелкод) в буфер
○ база: https://www.exploit-db.com/shellcodes
○ Metasploit: модули payloads для генерации

2. перезаписать адрес возврата, указав на адрес начала кода в буфере
3. адреса можно узнать с помощью отладчика

https://www.exploit-db.com/shellcodes

Вкл./Отк. защитных механизмов (Linux)
ASLR

отключение:

echo 0 > /proc/sys/kernel/randomize_va_space

включение:

echo 2 > /proc/sys/kernel/randomize_va_space

Stack Canary

отключение:
ключ -fno-stack-protector к gcc

NX-bit

отключение:
ключ -zexecstack к gcc

Инструменты отладки

EDB: графический отладчик удобно использовать для
пошаговой отладки

GDB: консольный отладчик,
анализ coredump

Пример. Вывод /etc/passwd через hello.c

Вход программы (./hello “[buf]”):
[buf] = [shellcode][A x (buf_size - shellcode_size - 8)][buff_addr]

buf_size подбирается, чтобы перезаписывать адрес возврата на main()

[shellcode]
48 31 c0 48 31 ed 50 48 bd
63 2f 73 68 61 64 6f 77 55

...

66 байт

[любые данные]
AAAAAAAAAAAAAAAAAAAA...

70 байт

[адрес буфера]
60 df ff ff ff 7f

8 байт

б
у
ф
е
р

Полезная нагрузка:
https://www.exploit-db.com/shellcodes/49547

Вставка любых данных до адреса возврата

Перезапись адреса возврата main() на
адрес шелкода

https://www.exploit-db.com/shellcodes/49547

Как узнать адрес буфера?
Адрес плавает в зависимости от среды выполнения (переменных
окружения и т.п.)

При первоначальной отладке:

● посмотреть в отладчике:
передать на вход тестовую строку (AAAAAA...) и найти её адрес в
памяти

При запуске без отладчика:

● посмотреть в coredump
● оставить тот же самый адрес, добавив NOP-дорожку

NOP-дорожка
● для снижения точности указания адреса можно поставить в начало

шелкода команды NOP с кодом \x90.
● при переходе на такую команду процессор просто переходит к

следующей
● пример:

[NOP x 100][shellcode][...]
можно сделать ошибку в адресе на 100

Важно:

● стек постоянно меняется при выполнении
● шелкод не должен перезаписываться

Защита от переполнения буфера
Переполнение буфера — архитектурная проблема, связанная с хранением
кода и данных в одном адресном пространстве.

Невозможно эффективно предотвратить, но можно ограничить
последствия, сделав атаку нерабочей:

● DEP/NX-бит
● ASLR
● Stack-Canary

Защита: Запрет выполнения стека
● Делает стек не выполняемым
● На аппаратном уровне реализована с помощью атрибута страницы

памяти (NX/XD – бита)
● На программном уровне поддерживается начиная с ядра Linux версии

2.3.23 и Windows XP SP1 (DEP)

Атака: Возврат в библиотеку (Return-to-libc attack)

Так как стек стал неисполняемым, то передавать управление на него
смысла нет.

Всё ещё можно:

● передать управление на любой исполняемый участок кода программы
● вызвать одну из функций любой подключенной библиотеки

Проблема: при этом необходимо поместить
аргументы этой функции в буфер или в регистры.

Атака: ROP (Return oriented programming)
Для атаки используются части кода, которые заканчиваются инструкцией
ret (“гаджеты”).

● Формируется цепочка из гаджетов и данных для них, которая
выполняет нужный код.

Пример: нужно записать в регистр eax определённое значение.

● Находим в машинном коде: pop eax; ret
● Адрес возврата перезаписываем на адрес pop eax; ret
● В начало буфера:

нужное значение + адрес следующего гаджета

Защита: ASLR (Address space layout randomization)

● Расположение важных структур (стека, кучи и библиотек) по случайным
адресам.

● Так как адреса становятся случайными, то нельзя построить цепочку
гаджетов или выбрать адрес для возврата в библиотеку.

ASLR. Обход
● В некоторых системах технология реализована не полностью.
● Перебор адресов.
● Использование уязвимостей, позволяющих читать содержимое памяти.
● В многопоточных приложениях (сервера) адреса не меняются при

создании/удалении потоков

Защита: Stack Canary
Вставляет определенное значение после буфера и проверяет его перед
выходом из функции.

Есть несколько видов защиты:

● Terminator canaries
● Random canaries
● Random XOR canaries

gcc использует комбинированный подход:

● 0x00 + 3 случайных байта

Обход Stack canary
● В некоторых случаях возможен перебор:

многопоточные сервера и приложения
● Использование уязвимостей, позволяющих читать память в стеке

Защита: Control-Flow Enforcement Technology (CET)

● работает на уровне процессора
● вводит дополнительный “теневой стек”
● при вызове call в него сохраняется состояние вызывающей процедуры
● при вызове ret производится проверка, защищающая от перезаписи

адреса возврата

Процессоры: Intel Tiger Lake

Литература и ссылки

● Д. Фостер, В. Лю. Разработка средств безопасности и эксплойтов. 2011

● База шелкодов:
https://www.exploit-db.com/shellcodes

https://www.exploit-db.com/shellcodes

